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1. Introduction 
This report summarizes Kestrel Institute’s achievements in its “e-Merge-ANT” project, 
part of DARPA’s “Autonomous Negotiating Teams” program (ANTs). The over-arching 
theme of the project was the efficient, autonomous management of distributed resources 
subject to soft-real-time constraints (“distributed resource management”). 

In distributed resource management, a set of physical resources – such as sensors or 
aircraft – are geographically distributed but can communicate, typically using radio. The 
resources are required to accomplish certain tasks – such as detecting and tracking targets 
or deploying munitions – and are subject to certain constraints – such as sensing ranges, 
limited communication, finite speed, and finite energy. In many cases, the resources must 
collaborate to effectively accomplish their tasks – e.g., several sensors may need to scan a 
target simultaneously to enable high-quality data fusion, or one aircraft may provide 
electronic jamming services in support of another. 

The problem in distributed resource management is to coordinate the resources to allow 
them to accomplish their tasks while ensuring that their constraints are respected. In the 
ANTs program, the problems exhibited strong dynamic aspects: both the tasks to be 
accomplished and the availability or capability of the resources could vary in real-time. 
Such dynamics must be accounted for by the resource management mechanism – i.e., it 
must be adaptive, to continually tune resource behavior to the current circumstances, and 
robust, to survive the failure of some resources with only proportional degradation in 
overall performance. 

Kestrel’s research broadly followed three main lines: (i) distributed constraint 
optimization; (ii) target detection and tracking in distributed sensor networks; (iii) high-
level modeling and automated code generation for time-critical targeting in air 
campaigns. 

For the first two of these, the resource management mechanism itself was distributed (as 
well as the resources) because the combination of real-time requirements and 
communication latency for typical application scenarios effectively ruled a centralized 
mechanism. For time-critical targeting, the resource management mechanism was 
centralized to allow integration with an existing software architecture (the distributed 
nature of the resources was manifest as a critical issue to be accounted for in satisfying 
the real-time constraints). 

This last integration requirement notwithstanding, Kestrel’s project also focused on 
characteristics deemed critical by the ANTs program, namely: 

• Scalability: the resource management mechanism should be able to scale to very large 
systems, involving thousands of resources. 



 

2 

 

• Robustness: localized failures of resources should not cause the failure of the entire 
system. 

• Cost-effectiveness: coordination in a distributed system incurs costs, for computation 
and communication. These costs may be measured in terms of energy usage (which is 
important if the resources have limited power supplies) and, for communication, the 
amount of radio-frequency chatter, that can reveal the location of the resources to 
adversaries. Consequently, the resource management mechanism should incur low 
costs where possible. 

• Good-enough, soon-enough solutions: resource management problems typically have 
combinatorial complexity, so that finding optimal solutions may take inordinately 
long times that are unacceptable given the real-time constraints. On the other hand, 
heuristic algorithms can often find solutions quickly, but the solutions may be of poor 
quality. The ANTs program attempted a compromise: the real-time constraints must 
be observed (the “soon-enough” aspect) but the quality of the solutions, while not 
optimal, should be better than what might be expected from heuristic algorithms (the 
“good-enough” aspect). 

In the remainder of this introduction, each of the three main lines of research are briefly 
described. These lines of research are elaborated in detail in later sections. 

1.1. Distributed Constraint Optimization 
Many aspects of resource management can be expressed in terms of constraint 
satisfaction or optimization. In constraint satisfaction, each variable in some set is to be 
assigned a value but the values are subject to constraints that determine the allowable 
combinations of the values – the objective is to find an assignment that satisfies all of the 
constraints. Similarly, in constraint optimization, the violation of a constraint incurs a 
penalty and the objective is to minimize the sum of the penalties. 

For example, consider the problem of allowing nodes in a wireless network to use a 
single radio frequency for communication. To avoid interference, nodes that are within a 
certain distance should not transmit at the same time. One way to model this problem in 
terms of constraints is to assign each node in the network a timeslot in a cyclic (periodic) 
schedule, during which timeslot the node is allowed to transmit. Nodes that are close 
enough to interfere are connected by a constraint that requires their timeslots to be 
different. (This is the classic problem of coloring the nodes in a graph so that connected 
nodes have different colors.) 

In distributed constraint problems, the assignment of values to variables is to be 
performed in a distributed manner, by communicating assignment “agents”1. This implies 
an essential locality of responsibility and knowledge in large systems: each agent is 
responsible for assigning values to some (bounded) subset of the variables; the agent 
                                                 
1 This term is being used as a convenient name for a component of the distributed assignment mechanism 
rather for association with the paradigm of “intelligent agents”. 
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knows the values of other variables only by the values being communicated to it and 
since communication is limited by latency and bandwidth, it is unrealistic to expect any 
single agent to know the value of every variable as the number of variables grows. 

Even though an agent’s knowledge and responsibility are essentially local, the effects of 
an agent’s decisions may, in principle, propagate arbitrarily far through the network of 
constraints; that is, an assignment made to one variable by one agent may require another 
agent to change its assignment in order to reestablish satisfaction of the constraints 
affecting its variables; this change in assignment may require a third agent to compensate 
in turn; and so on. Since communication takes time, it is possible that the overall 
assignment never stabilizes. 

In Kestrel’s research, distributed constraint optimization was used as an abstract 
paradigm for distributed resource management that allowed some essential aspects of 
practical problems to be isolated from some details that, while important for a particular 
problem, were probably of narrower interest. 

Using this paradigm, Kestrel was able to identify a particularly simple yet effective 
distributed algorithm based on each agent continually assigning its variables values that 
minimize the penalties associated with violated constraints, given what the agent knows 
of the values of other variables, and communicating the assignments to other agents. 
Kestrel was able to investigate vital aspects of the algorithm’s behavior, including 
convergence, and to develop simple ways to improve its behavior. 

1.2. Detection & Tracking of Targets in Distributed Sensor 
Networks 

The ANTs program developed a challenge problem for demonstrating distributed 
resource management techniques in the context of a distributed sensor network. A set of 
small radars were used to detect and track moving targets. Each radar was subject to 
certain constraints and multiple radars were to track each target to improve tracking 
accuracy. The radars were equipped with radios to allow coordination and data 
dissemination. 

In its work on the challenge problem, Kestrel developed a distributed resource 
management mechanism based on scan scheduling. Each radar continually maintained an 
estimate of the positions of any nearby targets (based on data it acquired itself and data 
received from nearby radars). Each radar also continually maintained and communicated 
to nearby radars a schedule of the scans it planned on taking in the near future. In 
determining its own schedule, a radar would try to scan nearby targets as well as possible, 
while taking into account which ones would be scanned by other radars (according to the 
schedules it had received from the other radars). Thus, the resource management 
mechanism is a particular instance of the abstract algorithm Kestrel developed in its 
investigation into distributed constraint optimization. 
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1.3. High-Level Modeling and Automated Code Generation for 
Time-Critical Targeting 

During the final year of its project, Kestrel investigated a problem proposed by AFRL as 
part of the TDDE (Time-critical-target Dynamic Decision Enabler) prototype being 
developed by AFRL and Lockheed Martin Mission Systems. In the context of an air 
campaign, a time-critical target (TCT) is a surface target that is discovered during 
execution of a daily battle plan (and was thus not specifically planned for) and that is 
available for a relatively short duration (maybe 10 to 15 minutes). Such targets often, 
though not always, have high priority; for example, a typical TCT is a missile launcher 
that comes out from under cover, is spotted while preparing for a launch and must be 
destroyed before it goes back under cover. 

One of the challenges in engaging TCTs is to identify aircraft that are close enough to the 
target to be able to reposition to engage it quickly enough, that have appropriate 
munitions available, have appropriate defensive capabilities (e.g., electronic jamming) 
and that were not previously assigned a higher-priority target. Given that such aircraft can 
be identified, their tasking orders should be modified to engage the TCT while 
minimizing disruption to previously planned actions. For example, if an aircraft is 
diverted to engage a TCT, it may require air-refueling later to allow it to complete 
previously assigned missions or to return to base. If a refueling tanker’s tasking orders 
are modified to provide fuel to the diverted aircraft, it may be unable to fulfill previously 
planned fuel transfers to other aircraft. Thus, a modification to engage a TCT may ripple 
through existing battle plans. 

Kestrel addressed this problem by extending its Planware system for generating 
schedulers from high-level models of resources and tasks. Planware had previously been 
developed to support the high-level modeling of batch-oriented transportation scheduling 
problems. Kestrel extended Planware to support incremental scheduling of target 
engagements and used Planware to model the TCT problem and generate an appropriate 
scheduler. 
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2. Summary of Project Results 
Developed notions of real-time, approximate, distributed constraint optimization (DCO). 

Showed how DCO applies to distributed resource management. 

Developed simple anytime algorithm for DCO. 

Demonstrated that the algorithm is scalable, robust and incurs low costs. 

Extended DCO notions to distributed resource management in the ANTs challenge 
problem. 

Developed distributed, anytime resource management mechanism for the challenge 
problem based on an informal notion of expectation maximization. 

Developed distributed, multi-target tracker to support resource management in the 
challenge problem. 

Demonstrated effectiveness of the resource management mechanism using challenge 
problem simulator. 

Developed high-level resource and task models for time-critical targeting in USAF air 
campaigns. 

Extended Kestrel’s Planware system to automatically generate incremental scheduler for 
time-critical targeting. 

Integrated time-critical-targeting scheduler with components developed by AFRL and 
Lockheed Martin for broader decision support module for time-critical targeting. 
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3. Distributed Constraint Optimization 
In a constraint optimization problem, each of a set of N variables xi (1≤i≤N) is to be 
assigned a value vi from some domain Di. The assignment is subject to a set of M 
constraints cj (1≤j≤M) each of which assesses a penalty, which may be zero, according to 
the values assigned to the variables. That is, each constraint is a function from the 
combined domain of the variables to the non-negative Reals: cj∈D→R0+ where D≡∏Di. 
The objective is to find an assignment that minimizes the total penalty C≡Σcj. (For 
satisfaction problems rather than optimization problems, the total penalty is required to 
be exactly zero.) 

In many practical problems, a given constraint will actually depend on only a small 
number of variables (a constraint actually depends on a variable if the value of the 
constraint can vary as the variable’s value varies). Two variables are said to be connected 
by a constraint if the constraint depends on both of them, and two variables are said to be 
connected if they are connected by some constraint. 

In such a context, it may be useful to view the constraint set as a graph in which each 
variable is represented as a node and each constraint as a hyper-edge connecting the 
nodes/variables on which it depends. The standard metrics and classifications from graph 
theory may fruitfully be carried over. For example, the mean degree of a graph/constraint 
set is the average number of nodes/variables to which a node/variable is connected, and 
the density of a graph/constraint set may be defined as the fraction of pairs of 
nodes/variables that are connected. 

For large ANTs problems, it is expected that the constraint set would be sparse (i.e., have 
low density) because a dense set would implies wide-scale, direct interaction across the 
entire set of resources, which does not seem realistic as the number of resources becomes 
large. In fact, it could be argued that a class of constraint problems can be considered 
scalable only if the mean degree is bounded as the number of variables goes to infinity. 

As an example, consider the problem of coloring the nodes in a graph so that each hyper-
edge connects only nodes of different colors. If the number of colors is fixed at K then 
the colors can be represented as integers in ZK. With Xj representing the variables on 
which constraint cj depends, the constraint can be expressed in the form 

 cj ≡ Σif njk>1 then njk else 0 (1≤k≤K) 

where njk is the number of variables that have color k and on which cj depends; i.e., 
njk≡|{xi | xi∈Xj ∧ vi=k}|. 

It should be noted that the model of random graphs commonly used in graph problems is 
often inappropriate for constraint problems arising in resource management applications. 
In random graphs, the probability of an edge connecting two given nodes is independent 
of any other edges that might connect those nodes to other nodes. However, in resource 
management problems the probability of a constraint connecting two variables is often 
higher if there is a third variable to which those two variables are both connected. This 
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correlation arises because interaction between resources is often dependent on their 
distance in geographical or communication space: for example, two transmitters are more 
likely to interfere with each other if they are geographically close. 

3.1. Distributed Problems 
In distributed constraint optimization (DCO), the assignment of values to variables is 
performed by a set of agents that can communicate but only with an inherent latency. In 
other words, there is an unavoidable delay in propagating information about change. Such 
problems are natural models for many physical systems in which the distribution of 
information is inherent, often because the physical devices on which information is stored 
or generated are physically separated. 

In most of Kestrel’s research on DCO, it was assumed that there was a one-to-one 
correlation between agents and variables (i.e., each agent was responsible for exactly one 
variable), that each agent is aware of the constraints that depend on its variable, and that 
two agents could directly communicate iff they had variables that were connected. These 
assumptions do not seem to be significant in principle since, for example it is 
conceptually straightforward to emulate direct communication using multi-hop 
communication. In practical terms, though, the extra latency of multi-hop communication 
may be significant. 

3.2. An Anytime, Peer-to-Peer Optimization Algorithm 
Kestrel’s research in DCO lead to the development of a simple algorithm that is 
surprisingly effective for many applications. The algorithm is defined below. 

1. Initially, each agent assigns its variable some arbitrary value (either chosen at random 
or computed using some fast heuristic). 

2. The agent idles for some random period, during which it may receive information 
from other agents about the values they have assigned their variables.  

3. The agent then assigns its variable a value that minimizes the total penalty assessed 
by its constraints, with respect to other variables’ values known to the agent. 

4. The agent then sends the assigned value (if it has changed) to the other agents with 
which it can communicate. 

5. Repeat Steps 2-4 indefinitely. 

The main storage and computational costs of the algorithm are incurred in Step 3. Note 
that efficient methods for finding a value that minimizes the constraint penalty are 
typically dependent on the types of the values and forms of the constraints. For example, 
in graph coloring problems, an efficient method is for the agent to maintain a histogram 
of the use of each color by its neighbors as it receives information from them in Step 2, 
and to choose any color in Step 3 that the histogram shows is least used. 
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Nevertheless, in general the costs for a given agent are determined by the degree of the 
agent’s variable rather than by the total size of the constraint set. Thus, if the degree of 
the constraint is bounded as the number of variables grows to infinity, then the per-
variable costs are also bounded; in other words, the algorithm should be scalable to 
arbitrarily large constraint sets. Similarly, the per-variable communication costs are also 
bounded. 

There are several versions of this algorithm that have nice performance under particular 
circumstances. For example, in loosely constrained systems – i.e., one in which there are 
many solutions for a given constraint set – a “conservative” version – in which an agent 
changes its variable’s value only if the current value gives rise to a non-zero penalty – 
can perform better than the standard version shown here. Other variants can be designed 
for synchronous systems (in which the agents operate in well-defined rounds). 

3.3. Experimental Assessment 
This algorithm has been experimentally assessed using standard problems (such as graph 
coloring and leader election) and random problems, using sparse constraint sets and 
dense sets, and using loose and tight constraint sets. The following general characteristics 
were observed. 

• Anytime improvement: the quality of the initial solution is determined by 
whatever method is used to generate the solution – random or heuristic. As the 
algorithm iterates, the quality of the solution initially quickly improves, and then 
asymptotically converges. Often, the asymptote is close to the theoretical best or 
the best found using a centralized algorithm. (Note, the quality of the solution is 
assessed globally using all of the variables’ values.) 

• Scalability: in the preceding section, it was noted that the algorithm’s per-variable 
costs are bounded as the number of variables goes to infinity. Experiments also 
show that the solution quality is maintained. 

• Adaptivity: by varying the node and constraint set at random while the algorithm 
is running, it was shown that the algorithm quickly adapts to change, even sudden, 
large-scale change. 

• Robustness: by corrupting and dropping messages, it was shown that the 
algorithm is robust against communication error. 

Experiments also showed that the algorithm could be pushed into a state called 
“thrashing”, in which a large fraction of the agents are continually changing their 
variables’ values with no overall improvement in solution quality. In extreme cases, the 
solution quality was lower than what would be expected from random assignment of 
values to the variables. 

Thrashing is caused when the idle period (Step 2 of the algorithm) is too low compared 
with the communication latency: if agents change values quicker than the changes can be 
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communicated, then the information on which agents based their optimization decisions 
(Step 3 of the algorithm) is always out of date, so the agents make poor decisions. 

Fortunately, and somewhat surprisingly, it was found that moderate values for the idle 
period worked well across a wide range of constraint sets, regardless of how tightly 
constrained or how dense. 
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Figure 1: Typical performance of the algorithm for coloring a 
graph with various numbers of colors (2 and 3 colors represent 
a tightly constrained system, while 8 or more colors represent a 
loosely constrained system). The vertical axis measures the 
penalty incurred for constraint violations while the horizontal 
axis measured the number of iterations each node makes through 
the idle-optimize-communicate process. 
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4. Detection & Tracking in 
Distributed Sensor Networks 

The ANTs challenge problem was designed as a room-sized demonstration platform for 
distributed resource management that incorporated real-world concerns such as sensor 
noise and communication limitations. The objective was to detect and track moving 
targets using small, radio-equipped Doppler radars, each of which could scan a single 
target, at any given time, within a limited distance. The resource management aspect of 
the challenge problem was to coordinate the radars to ensure that targets were quickly 
detected and subsequently scanned continuously by several radars (to achieve high-
quality tracking) as they moved into and out of range of individual radars. 

Each radar sensor consisted of three emitter/detector pairs, oriented at 120 degree 
intervals, only one of which can be scanned at any given time, with each scan taking up 
to 0.6 seconds for an amplitude-only measurement or 1.8 seconds for an amplitude-and-
frequency measurement. Using standardized targets, amplitude readings gave estimates 
of distance while frequency readings gave estimates of radial speed (towards or away 
from the radar). 

 
Figure 2:BAE radar showing three emitter/detector pairs 

Each emitter could be independently activated or deactivated. While an emitter was 
active, it consumed power, regardless of whether or not its detector was being sampled. If 
a deactivated emitter was activated, the emitted beam was unstable and did not give 
reliable measurements for approximately 2 seconds. 

The strength of the signal reflected off a target was determined by the following equation: 
 m(R,θ) = exp(-(θ/A)2) . K/R2 
where R was the sensor-target distance, θ was the angle between the emitter's mid-beam 
and the target (0 degrees ≤ θ < 180 degrees), and K and A were constants. The constant A 
was about 40 degrees so that, for example, a target that was at mid-beam would have 
produced a signal that was e9/4≈9.5 times larger than a target that was at the same distance 
from the sensor but 60 degrees off mid-beam. The emitters, detectors and sampler were 
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subject to random noise (both internal and environmental) that limited the effective range 
of the sensors to about 7 meters. 

If a radar beam reflected off several targets simultaneously, the reading produced by the 
detector were essentially a random combination of what the individual targets would 
produce separately, and was effectively useless. Each radar sensor had an omni-
directional radio transmitter and receiver that could be used to communicate 
measurements and arbitrary data in short bursts (message lengths preferably below 100 
bytes).  The communication range was limited by the effective physical transmission 
range, so its “broadcast” mode is really a local, multicast mode. 

A single radar amplitude measurement corresponded to a contour in (R,θ). To accurately 
locate a target, more-or-less simultaneous measurements from several, nearby sensors 
had to be combined using trilateralization. Of course, readings from sensors are subject to 
noise so new measurements for a target were combined with the target's track to achieve 
the best compromise between where the target was expected to be (based on its history) 
and where the sensors reported it to be. 

Target
Estimate

Measurement Contours

 
Figure 3:Estimating a target’s position from the 

measurement contours of three radars 

4.1. Solution Design 
Kestrel’s solution for the challenge problem had two main components: 

1. A distributed, multi-target tracker that ran on each radar to maintain “world 
estimates” representing estimates of the positions and velocities of nearby targets. 

2. A distributed scan scheduler that ran on each radar to coordinate the radar’s scans 
with those of nearby radars, with the objective of producing high quality scans of 
known nearby targets. 
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Figure 4:Architecture of the component 

 running on a single radar 

The distributed, multi-target tracker was built using the centralized, single-target tracker 
modules provided by BAE and the University of South Carolina – it was not a focus of 
Kestrel’s work. The distributed scheduler is described in the following sections. 

4.2. Distributed Scheduler 
The distributed scheduler operated using the same principles as described for distributed 
constraint optimization: each radar had a scheduling agent that was solely responsible for 
producing that radar’s scan schedule. Each agent continually executed to continually 
adapt the scan schedules to changing circumstances, with randomized idle periods to 
ensure coherence. When updating a radar’s scan schedule, the radar’s scheduling agent 
took into account the scan schedules of other, nearby radars (as communicated to it) and 
the estimates of nearby targets (derived from the distributed tracker). 

The interesting aspect of this particular application of the distributed constraint 
optimization algorithm was how to optimize a radar’s scan schedule. A scan schedule 
was represented as a finite map from contiguous time slots to sector numbers, where a 
sector number identified one of the three emitter/detector pairs. Given a world estimate 
and existing scan schedules for its radar and nearby radars, a scheduling agent could 
predict where targets were likely to be during each time slot and compute a quality metric 
that represented how well those locations would be scanned by its own radar and nearby 
radars (the details of this quality metric are presented below). 

This quality metric was the basis for a hill-climbing algorithm in which the scheduling 
agent transformed individual time slot-sector assignments for its own radar to try to 
improve the overall scanning quality. 

4.2.1. Scanning Quality Metric 
Given a world estimate and a set of radar scan schedules, there were two main terms in 
computing an overall scan quality metric: 

1. The “target density field” T. In principle, this was a function from space-time 
coordinates to the Reals that represented how many targets were expected to be found 
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at that point (in space and time). In practice, T was computed over a discrete grid of 
(x,y,t) points representing 2-dimensional space and time. 

2. The “scan quality field” S. This represented how well each point (in space and time) 
was being scanned, taking into account the cumulative effect of the radars. As above, 
in principle S was considered to be a function on continuous space-time coordinates; 
in practice, it was a map over the same discrete grid in (x,y,t). 

The overall metric was the inner product of these two fields (i.e., they were multiplied 
point-wise and them summed); consequently, the metric awards high scores to scan 
schedules that result in good scanning of space-time points where targets are likely to be. 

4.2.1.1. Target Density Field 
Ideally, the target density field would be derived from probabilistic estimates over target 
trajectories derived from the tracker. However, the basic tracking modules did not 
provide probabilistic estimates so instead an estimate was made as to the relative 
importance of each point in space-time, based on two main terms: 

1. Target estimates. It was assumed that the number of targets remains fixed during one 
hill-climbing step. A discrete estimate was available for each target. Each target 
estimate was comprised of a time stamp, a single position estimate and a  single 
velocity estimate. The trajectory of a given target was predicted by linearly 
extrapolating from its estimated position using its estimated velocity. Such a 
trajectory would, of course, be a zero-width line; a nominal fuzziness representing 
uncertainty was imposed on the trajectory (with the amount of fuzziness increasing 
the further out in time being predicted). 

2. Raw measurements. Raw radar measurements could provide reasonably certain 
information about limited regions of space over limited time periods: if a strong radar 
measurement was obtained, it was reasonably certain that a target was present in the 
region of space corresponding to the measurement’s sector when the measurement 
was taken; otherwise, if a measurement was essentially background noise, then it was 
reasonably certain that no target was present. Thus, for a given measurement, a 
positive or negative value could be added to the overall target density field for each 
space coordinate in the corresponding sector, at the time of the measurement. For 
other times, the value added could be reduced in magnitude to account for how our 
knowledge degrades (since a target may not stay in given sector). 

The rationale for using these two factors was that raw measurements provided 
information that was reasonably reliable but limited in scope (in space and time) whereas 
target estimates provided information that was easy to extrapolate but that had proven to 
be somewhat unreliable in previous experiments. 
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Figure 5:Predictions of the likely locations of two targets 
averaged over time. One target starts at the bottom left (near the 
origin) and moves to the right; the other starts at the top right 
and moves to the left. 

 

4.2.1.2. Scan Quality Field 
The scan quality field represents how well each point (in space and time) is cumulatively 
scanned, under the following informal rules: 

• a scan by a given head on a given radar unit will produce good data for a target that is 
close to the unit and near the head’s mid-beam; 

• fewer than two different radars scanning the same point simultaneously produces low 
scan quality; 

• scanning by two or three different radars produces good scan quality; 

• scanning by more than three produces scan quality that is higher, but only marginally 
so. 

The overall scan quality field was computed by first computing how well each point (in 
space and time) was scanned by each individual radar, and then computing the 
cumulative effect. 

4.2.1.3. Single-Radar Scan Quality Field 
How well a given radar would scan each point in space and time was determined by the 
measurements that it was to take. Ignoring initially the temporal aspects, the quality of 
scanning at some point in space was taken to be a reasonable function of the strength of 
the radar signal that would be detected if a target were at that point: 

 quality(R,φ) = log(signal(R,φ))/log(max_signal) 

where R was the distance to the point, φ was the angle between the point and the mid-
beam of the radar head taking the measurement, signal(R,φ) was the standard radar model 
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of the signal strength and max_signal was the maximum signal that could be observed 
(approximately 4000). 

Now consider the temporal aspects. A single radar scan would measure a given point in 
space over some non-zero time period – information would be acquired about any target 
that was present at that point in space at any time during the measurement period. 
However, it seems reasonable that the quality of information obtained would be higher 
the longer the target was present. It thus seems reasonable to associate a high quality with 
the mid-point of the measurement period and somewhat lower quality with the start and 
end points. 

Time

measurement�
begins

measurement�
ends

persistence�
curve

 
Figure 6:Quality of information from a measurement 

as a function of time 

Moreover, since targets would tend to have non-zero spatial extent and to move at finite 
speeds, a non-zero quality was associated with time points outside the actual duration of 
the measurement. (For example, if a measurement lasting two seconds is taken every 
three seconds then some knowledge about the time in between measurements is expected 
to be acquired.) 

These factors were modeled by awarding a high quality of scanning to a measurement’s 
mid-point and linearly decaying the quality on either side. The overall quality field 
arising from multiple measurements (by the same radar) was computed by summing the 
quality fields arising from the individual measurements. 

Quality

Time
 

Figure 7:Quality of information from a sequence of 
measurements from a single radar, as a function of time 

 

4.2.1.4. Multiple-Radar Scan Quality Field 
To compute the cumulative effect of scans by multiple radars, a non-linear 
“amplification” function was used that awarded: low scores when its input was equivalent 
to about one strong radar measurement; moderate scores for input equivalent to two 
strong measurements; high scores for three strong measurements; and only slightly higher 
scores for four or more strong measurements. 
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Figure 8:Non-linear amplification function representing 

the cumulative quality of scans from multiple radars 

When combined with the cost of taking measurements, such a function would encourage 
collaboration on scanning targets but discouraged swamping of targets with excessive 
sensor energy, since the differential in the quality-cost tradeoff would become negative at 
high sensor energies. 
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Figure 9:Overall quality of scanning, as a function of time, from 

sequences of measurements from multiple radars 

4.3. Experimental Assessment 
Kestrel’s distributed coordination mechanism was evaluated using the Radsim simulator 
for the challenge problem developed by AFRL. Typical results are shown below. There 
were 8 sensors, indicated by the groups of triangles (indicating the 3 emitter-detector 
pairs per sensor). There were two targets, moving in oval tracks, indicated by the 
unbroken lines, around a room of dimensions 40 units by 40 units. 

The black dots represent typical output from a tracking node: each dot is an estimate of a 
target's position. The error in a position estimate p at time t can be computed as the 
distance between p and the true target position at time t. The track quality can be 
measured as the root-mean-square of the single-estimate errors. 
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Figure 10:Tracking estimates for two targets 

For a single target (not illustrated), r.m.s. errors of about 0.6 units were obtained; for two 
targets, about 0.9 units. These values were close to the limit (about 0.5 units) of what the 
tracker was expected to be able to achieve, given its approximation techniques, its model 
of the targets, and (simulated) sensor noise. They also compare well with errors obtained 
using purely random choice of sectors to be measured, namely about 2.2 units for a single 
target. 

The mean power usage was about 50% (meaning that, on average, half the emitters were 
on at any given time). This is slightly higher than was hoped for, especially for a single 
target, for which it should have been possible to reduce the power usage to around 33% 
(meaning that only one emitter would be active on each sensor, on average). 

Evaluation was also carried out using hardware. These results were much less 
satisfactory. Several problems were identified: 

• The sensor signal model differed significantly from the theoretical model, so 
processing the data in the tracker was problematic. The final challenge problem 
demonstration attempted to ameliorate this problem by combining, in a 
controllable fashion, real signals from the hardware with artificial signals 
generated from the theoretical models (given the target’s true position). This 
indubitably would have improved the results, had not further problems intervened. 

• Towards the end of the final demonstration, Kestrel determined that its multi-
target tracker was sending too many message, causing many of them to be lost 
due to interference. Using a lossless communication emulator seemed to result in 
better tracks. 
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5. High-Level Modeling and Automated Code 
Generation for Time-Critical Targets 

This section presents Kestrel’s overall approach to time-critical targeting and its high-
level models of resources and targets. The following section presents the Planware tool 
that is used to formalize these models and to automatically generate scheduling code 
from the formalization. 

The time-critical-targeting Dynamic Decision Enabler (TDDE) is a prototype component 
being developed by AFRL and Lockheed Martin as a candidate for insertion into the 
Theater Battle Management Core Systems (TBMCS). TBMCS is a key command and 
control system supporting USAF air campaigns. TDDE is designed to augment TBMCS 
by supporting rapid decision making regarding the prosecution of surface targets of 
opportunity – that is, targets that are identified during pre-planned operations and that are 
prosecutable for relatively short periods (tens of minutes, typically). 

Three significant aspects in the TDDE decision process are: 

• Weapon-target pairing: selection of appropriate resources to prosecute the TCT. 
These resources are typically aircraft or missiles. 

• Threat assessment: identification of threats that may be encountered by selected 
aircraft while prosecuting the TCT (including during ingress and egress). 

• Support package creation: selection of appropriate resources to support the primary 
resources in prosecuting the TCT. These resources are typically electronic warfare 
aircraft, fighter escorts and refueling tankers.  

In general, these aspects should be addressed as a joint scheduling problem, since they 
are interdependent. For example, threat assessment cannot be carried out until weapon-
target pairing has been performed, since the threats expected to be encountered depend on 
the aircrafts’ flight paths. And support package creation cannot be carried out until threat 
assessment has been performed since the type of support required depends on the types of 
threat expected. But weapon-target pairing cannot be completed until support package 
creation has been performed since a given choice of aircraft cannot be confirmed until 
appropriate support has been selected. 

Kestrel addressed the weapon-target pairing and support package creation aspects as a 
joint scheduling problem, utilizing a threat assessment component developed by AFRL. 
This represented a significant advance over other weapon-target pairing packages which 
attempted to linearize the joint problem into three successive, one-off decisions, which 
frequently resulted in no feasible solution being found. 

Kestrel’s scheduler has been delivered to Lockheed Martin and AFRL and should be 
included in a demonstration in the latter half of 2004. 



 

19 

5.1. Overview of Kestrel’s Approach to TCT Prosecution 
Kestrel’s Planware application is a tool for modeling scheduling/planning problems at a 
high level and automatically generating executable scheduling/planning code for specific 
problems. For example, to model TCT prosecution, significant resources such as aircraft, 
munitions and missiles are described in terms of what actions they can perform and what 
constraints they must obey (e.g., aircraft can reposition and deploy munitions; they are 
subject to maximum flying speeds and munitions capacities; munitions have 
characteristics such as how far from a target they can be released and how big an 
explosion they cause). Likewise, tasks that are to be carried out are described; for 
example, a target description might include the target’s position, what type of armor it 
has and how much collateral damage is allowed. 

Planware combines such descriptions with generic scheduling/planning algorithms to 
create highly tailored scheduling/planning code for the specific problem described. This 
code can be compiled to produce a stand-alone executable scheduler/planner. 

 
Figure 11:Planware generates executable schedulers 

from high-level models 

It is the scheduler/planner that would be an active run-time component of TDDE & 
TBMCS (Planware being a design-time component). Due to legal and security 
restrictions, integration with the TBMCS system was accomplished through XML-based 
exchange of data files rather than through direct access to the TBMCS databases. 
Consequently, the scheduler takes as input an existing schedule (as well as target and 
resource information) and returns a modified schedule which will include the prosecution 
of any TCTs if appropriate resources could be found. 

5.2. General Problem Statement 
The general problem to be addressed may be formulated as follows. The Red Force has 
under its command various ground vehicles and installations, which are potential targets 
for the Blue Force. Ground vehicles include tanks, howitzers and mobile missile 
launchers; installations include buildings, camps, munitions dumps, radars, defensive 
installations (e.g., anti-aircraft guns and surface-to-air missiles), roads and bridges. 

The Blue Force has under its command various aircraft. Strike aircraft are capable of 
destroying Red targets, when equipped with appropriate munitions; support aircraft 
include some capable of destroying some classes of Red targets (e.g., radar and defensive 
installations), electronic warfare aircraft and refueling tankers. 

Planware

target models 

aircraft models executable scheduler

targets

updated schedule

aircraft & 
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Blue aircraft have been assigned to engage Red targets over periods of one to three days. 
Any given aircraft is capable of engaging only a limited number of targets because of 
various constraints, which include finite munitions capacity, finite fuel capacity and 
finite speed. 

During engagement, new Red targets are identified as Time-Critical Targets (TCTs) 
which can be engaged for only a limited time. The objective is to adjust the assignment of 
Blue aircraft to optimally engage the Red targets, including the newly-identified targets. 
The quality of an assignment may be gauged in terms of how many TCTs are engaged 
and how many of the originally-engaged targets are still engaged, taking into account any 
disruption caused by engaging the TCTs. Disruption occurs when engaging a TCT 
requires an aircraft to forego engaging some other target because of the aircraft’s 
constraints. 

Since time is of the essence for TCTs, the reassignment must be computed quickly, say 
within one minute – strict optimality may be sacrificed to achieve quick computation. 

This problem is formulated more precisely in the following sections. 

5.3. Representing Red Target Information: Target Tracks 
Intelligently assigning Blue aircraft to Red targets requires some knowledge about where 
the Red targets are and where they are likely to go. In this problem formulation, it is 
assumed that each target is expected to follow a piece-wise linear trajectory: that is, at 
times T0, T1, …, Tn, the target is expected to be at positions p0, p1, …, pn (for some n) and 
the target is expected to move with a constant velocity between each position. (Note that 
a stationary target, such as a building, can be represented with a degenerate trajectory in 
which all positions are the same.) 

Additional information may be associated with each target: 

• Class: a designation of the type of target (e.g., Tank). This information can be used, 
for example, to determine the effectiveness of particular classes of munitions. 

• Value: the importance of this target relative to other targets. In this formulation, a 
target’s value is represented as a real number having absolute significance: thus, for 
example, 1 target of value 11 is considered more important that 2 targets each of 
value 5. 

• Collateral damage radius (optional): the maximum distance from the target at which 
collateral damage from munitions is permitted. This radius may be used to determine 
if a particular class of munitions is permissible. 

• Approach angle (optional): the direction from which a Blue aircraft must attack the 
target. 

Some of this information may be specified for individual segments of a target’s 
trajectory; for example, the collateral damage radius may be reduced while the target is 
passing civilian buildings. 
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5.4. Representing Blue Aircraft Information: Aircraft Schedules 
Blue aircraft are to be assigned to directly engage Red targets and to support such 
engagements. In this problem formulation, assignments are represented on a per-aircraft 
basis. 

An aircraft’s assignments are represented as a schedule, in which particular actions are to 
be performed over specified time periods. Typical actions include: 

• flying to specified coordinates; 
• engaging a specified target (which may require fixing the target and deploying 

munitions); 
• rendezvousing with a specified Blue aircraft at specified coordinates (e.g., a strike 

aircraft may rendezvous with a refueling tanker or a support aircraft may rendezvous 
with a strike aircraft); 

• refueling; 
• jamming Red sensors; 
• destroying Red radar or defensive installations to support a strike mission. 
Note that some actions may occur simultaneously (e.g., flying and jamming) and some 
actions require additional information to be specified (e.g., with what type of munitions a 
target is to be struck). 

Given an aircraft’s schedule (and some information about the initial state of the aircraft), 
other useful information can be computed; for example, the aircraft’s trajectory or the 
dynamic state of consumable resources (e.g., fuel and munitions) at any given time. Some 
actions may be indeterminate in outcome or in resources required; e.g., the time required 
to fix a target may not be known in advance, or the number of Red installations destroyed 
by support aircraft – and thus the number of missiles deployed – may not be known in 
advance. In this problem formulation, appropriate upper- or lower-bounds will be used 
for indeterminate quantities. 

5.5. High-Level Constraints on Schedules 
The actions of an aircraft are constrained due, for example, to such physical limitations as 
fuel and munitions capacities and maximum speed. These constraints carry over to 
aircraft schedules: for example, the time allowed in a schedule for an aircraft to fly 
between two positions must not be so short as to require the aircraft to exceed its 
maximum speed. 

Other constraints arise from the interactions between multiple aircraft or between a Blue 
aircraft and a Red target. For example: if an aircraft and a refueling tanker are scheduled 
to rendezvous, they must be scheduled to be at the same coordinates at the same time; if 
an aircraft is scheduled to engage a target at some time, the scheduled engagement 
position must be within striking range of the target’s (expected) position at that time. 
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Because the Blue aircrafts’ actions are explicitly scheduled and the trajectories of known 
Red targets are (to some degree) predictable, constraints such as the above can be 
expressed as predicates over schedules and target tracks. For example, the maximum 
speed constraint can be expressed as follows: 

∀S:Schedule, f:Action∈flights(S)⋅ 
duration(f)×maximumSpeed(aircraft(f)) 
≥ distance(origin(f), destination(f)) 

This can be read as follows: 

• For all schedules, denoted by S, 
• and for all actions, denoted by f, contained in S that correspond to flights (rather than, 

say, engagements), 
• the maximum distance that the aircraft could fly in the time allowed must be greater 

than the distance of the flight. 
When an aircraft is scheduled to engage a newly-identified TCT, the parameters of 
already-scheduled actions may need to be adjusted to accommodate actions introduced 
for the new TCT. For example, the duration of a scheduled flight may need to be reduced 
to allow time for the aircraft to intercept and engage the TCT. Such a reduction may 
cause the maximum speed constraint to be violated, indicating that a choice may need to 
be made between engaging the TCT with this aircraft or dropping the scheduled flight 
and any other actions that depend on it (such as engaging other targets at the destination). 
Such a choice would be informed by the objective function which would take into 
account the importance of the TCT versus the total importance of scheduled targets that 
would be dropped. 

In general, the constraints on the aircrafts’ schedules introduce dependencies between 
scheduled actions, and when new actions are added or scheduled actions are modified or 
dropped, the dependencies propagate ripple effects through the schedules. Some of the 
ripple effects may be suppressed by utilizing slack in the schedules (e.g., an aircraft may 
be able to increase its speed in earlier flights to allow a new flight to be introduced) but 
some may require disrupting schedules (e.g., dropping scheduled targets). 

5.6. Rôle of Support Aircraft 
Support aircraft fulfill rôles that are necessary or helpful to the primary engagements 
scheduled for strike aircraft. Support aircraft are explicitly scheduled and have their own 
particular constraints. Some of these constraints relate to the physical limitations of the 
aircraft (e.g., maximum speed and maximum fuel capacity) and some relate to their 
interaction with strike aircraft (e.g., EW aircraft must be at approximately the same 
location at the same time as the strike aircraft they are supporting). Such constraints can 
be expressed in a similar manner as those for the strike aircraft. 

Many of the actions performed by support aircraft are intended to reduce the threat to 
strike aircraft posed by Red defensive installations by, for example, jamming or 
destroying Red radars and surface-to-air weapons. The locations and classes of known 
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Red installations can be used to annotate segments of the strike aircrafts’ trajectories with 
information about the threats posed by the Red installations. Such threat assessments 
may indicate the likelihood that a Red installation may prevent the successful 
accomplishment of Blue engagements or may endanger Blue strike aircraft. Support 
aircraft can be scheduled to precede or shadow the strike aircraft through those segments 
to suppress the threat; for example, offensive, support aircraft may be scheduled to 
destroy Red SAM sites before strike aircraft fly near their locations or EW aircraft may 
be scheduled to accompany strike aircraft while they fly near Red SAM locations. 

5.7. High-Level Objective 
It is expected that the number of Red targets may exceed the number that could possibly 
be engaged by the Blue forces in the time under consideration. Consequently, decisions 
may need to be made as to which targets should be engaged. Engagement decisions are 
informed by such factors as the value of the targets and the effectiveness and 
permissibility of various types of munitions against a variety of targets. (For example, by 
loading one type of munitions, an aircraft may be able to engage a small number of high 
value targets, whereas by loading another type of munitions, the aircraft may be able to 
engage a high number of low value targets.) 

Given an aircraft’s schedule, the target engagement score may be computed by 
considering each scheduled target engagement and computing an effective score for that 
target, and summing over all engagements. The effective score for a single engagement 
would reflect the value of the target, the effectiveness of the munitions the aircraft is 
scheduled to deploy against the target, and the likelihood of successful engagement 
(which would be affected by such factors as suppression of Red defenses by support 
aircraft). For multiple aircraft, the target engagement scores may be summed to compute 
a total score for all of their schedules. 

To a first approximation, maximizing the total target engagement score may be taken 
as the objective in scheduling the Blue aircraft. 

Of course, scheduling must ensure that basic constraints such as the maximum speed 
constraint are observed. In addition, other terms may be taken into consideration: 

• Minimizing the disruption to pre-scheduled engagements may be given explicit 
emphasis by using different weights for non-TCT targets whose engagements are 
dropped and for TCTs that are added to schedules. 

• The cost of the scheduled actions should be minimized, where the cost may be 
measured, say, in terms of the amount of fuel and munitions scheduled to be 
consumed. 

• The operational risk of the actions should be minimized, where the risk may be 
measured, say, in terms of damage Red forces might inflict on Blue aircraft and 
likelihood of successful engagement of targets. 

It may be appropriate to take as the overall objective function a linear weighting of the 
total target engagement score and these terms. 
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5.8. Red Target Models 
All Red forces – such as vehicles, installations and buildings – that are of interest are 
modeled as targets. In any given scenario, a specific target may or may not be designated 
to be attacked; even if a target is not to be attacked, it may still be relevant for, say, threat 
assessment. 

The track database in the air theater management system is expected to provide the 
following information for each target: 

 Target:: 
  id: TargetDesignator 
  class: TargetClass 
  value: Real 
  minKillProbability: Real 
  explosives: ExplosiveYield 
  airThreatRange: Distance 
  trajectory: Trajectory 

The target designator is an uninterpreted symbol that uniquely identifies a target. The 
class indicates the type of target (tank, SAM, etc). The value indicates the target’s 
importance. 

The minimum kill probability determines the classes and quantities of munitions that 
should be deployed against the target – their combined probability of destroying the 
target must exceed the minimum kill probability. However, due to a lack of publicly 
available data on munitions effects, a simplified formulation is used here: the explosives 
property specifies a total weight of explosives that must be deployed against the target 
(ExplosiveYield is a weight in kilograms). 

The air threat range indicates the distance over which a target may be a threat to aircraft. 

The route indicates where the target is expected to go, in terms of a sequence of way-
points between which the target moves with constant velocity: 

 Trajectory:: sequence of WayPoint 
 WayPoint:: 
  position: Coordinates (3-dimensional) 
  time: Time (absolute date and time) 
  angleOfAttack: PlanarAngle (degrees, optional) 
  damageRadius: Distance (meters, optional) 

Each way-point indicates where the target is expected to be at the indicated time (note 
that 3-dimensional coordinates are used, even though the target is a ground target, in case 
altitude is a consideration). It may also indicate a direction from which the target must be 
attacked and a maximum collateral damage radius: these two properties apply to the 
target until the next way-point. 

It is assumed that there is no value in engaging a target before the time of the first way-
point or after the time of the last way-point. A stationary target may be specified using 
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two way-points that have the same position: the two specified times would determine the 
period during which the target should be attacked. 

5.8.1. Example Target Classes 
The following classes of target are used in this problem formulation: 

• Surface-to-Surface Missile launcher (SSM): 
light explosives required; value 10; range 120 km. 

• Surface-to-Air Missile launcher (SAM): 
light explosives required; value 15; air threat range 60 km. 

• Anti-Aircraft Artillery guns (AAA): 
light explosives required; value 5; air threat range 4 km. 

• Early Warning Radar (EWR): 
medium explosives required; value 14; air threat range 100 km. 

• Target Acquisition Radar (TAR): 
medium explosives required; value 15; air threat range 10 km. 

• Armored Personnel Carrier (APC): 
medium explosives required; value 0.1; travel range 500 km, speed 65 km/h. 

• Self-propelled Howitzer (HOW): 
light explosives required; value 0.2; munitions range 25 km; travel range 250 km; 
speed 55 km/h. 

• Tank (TNK): 
medium explosives required; value 0.4; munitions range 30 km; travel range 450 km; 
speed 60 km/h. 

• Depot (DP): 
value 0.1. 

• Building (HQ): 
value 0.3. 

• Bunker (BNK): 
value 0.2. 

• Bridge (BRG). 
Target values may change depending on circumstances; for example, weapon stores may 
be more valuable during the sustained phase of a campaign than during the initial phase. 

For the purposes of examples, “light” explosives may be taken to be 50 kg, “medium” 
100 kg, and “heavy” 200 kg. For the last four target classes, explosive requirements are 
determined on a per-target basis. 

Only SAMs and AAAs are capable of damaging aircraft, although EWRs and TARs are 
also considered threats to aircraft. The speed and travel range characteristics are not 
currently used in formulating the problem but may be useful for constructing 
demonstration scenarios. 



 

26 

5.9. Blue Aircraft Models 
In this problem formulation, all Blue forces are aircraft – ground resources such as 
landing strips are not considered. For each aircraft of interest, the following information 
is assumed to be available: 

 Aircraft:: 
  id: AircraftDesignator 
  class: AircraftClass 
  schedule: AircraftSchedule 

The aircraft designator is an uninterpreted symbol that uniquely identifies an aircraft. 
The class indicates the type of the aircraft (fighter, bomber, EW, etc). The schedule 
indicates what actions the aircraft will be performing – see below. 

In this problem formulation, the following classes of aircraft are considered: Strike-
Support Fighter (SSF), Ground Attack (GA), Refueling Tanker (RT) and Electronic 
Warfare (EW). Each class of aircraft has certain properties, some of which may be shared 
with other classes. For simplicity, in this formulation, all aircraft are modeled using the 
following, common properties, some of which are optional: 

  maximumSpeed: Speed (meters/second) 
  fuelCapacity: FuelQuantity (kilograms) 
  refuelingCapacity: FuelQuantity (kilograms, optional) 
  refuelingDuration: Duration (seconds) 
  refuelingProximity: Distance (meters) 
  burnModel: FuelBurnModel 
  standoffEWRange: Distance (meters, optional) 
  escortEWRange: Distance (meters, optional) 
  EWCapacity: Natural 
  munitionsCapacity: MunitionsCapacity (optional) 
  rearmingDuration: Duration (seconds, optional) 
  engagementDuration: Duration (seconds, optional) 
  defenseRange: Distance (meters, optional) 
  defenseCapacity: Natural 
  minOnGroundDuration: Duration 

The maximum speed is taken to be a constant: in subsequent formulations, it may be 
modeled as being dependent on the aircraft’s loaded weight or external conditions (e.g., 
wind speed). 

The fuel capacity is the maximum amount of fuel the aircraft can carry for its own use; in 
contrast, the refueling capacity refers to the amount of fuel the aircraft can carry for 
refueling other aircraft. The default value of the refueling capacity if none is explicitly 
provided is zero. 

The refueling duration is the maximum time required for the aircraft to refuel. The 
refueling proximity is the maximum distance a refueling tanker can be from a client 
aircraft when beginning refueling. 
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The fuel burn model has two components that predict (i) the amount of fuel consumed in 
covering a specified distance in a specified time and (ii) the amount of fuel consumed by 
an airborne aircraft holding its position for a specified period (i.e., circling to maintain an 
approximately constant position): 

 FuelBurnModel:: Distance × Duration → FuelQuantity (meters × seconds → kilograms) 
 FuelBurnModel:: Duration → FuelQuantity (seconds → kilograms) 

The standoff EW range indicates over what distances an EW aircraft can effectively cloak 
client aircraft against enemy threats from a standoff position. The escort EW range 
indicates how close an EW aircraft must remain to a client aircraft to effectively cloak it 
against enemy threats during escort. The EW capacity indicates the maximum number of 
simultaneous threats against which an EW aircraft can provide effective protection. The 
default value if none is explicitly provided is zero, indicating that the aircraft cannot 
provide EW support. 

The munitions capacity indicates how many of various types of munitions the aircraft can 
carry. In this problem formulation, the munitions capacity is abstractly modeled as a 
predicate that specifies allowable munitions loads, where a munitions load specifies a 
quantity (possibly zero) of each class of munitions: 

 MunitionsCapacity:: MunitionsLoad → Boolean 
 MunitionsLoad:: MunitionsClass → Natural 

The default value if none is explicitly provided is a munitions capacity that allows no 
munitions to be loaded (i.e., the aircraft cannot carry munitions). 

The rearming duration is the maximum time required to rearm this class of aircraft. The 
default value of zero applies when the aircraft has no offensive capabilities. 

The engagement duration is the maximum time allowed for the aircraft to fix and attack 
targets. The default value of zero applies when the aircraft has no offensive capabilities. 

The defense range is the maximum distance the aircraft can be from client aircraft during 
escort. The default value of zero applies when the aircraft has no defensive capabilities. 

The defense capacity is the maximum number of simultaneous threats against which a 
support aircraft can feasibly protect client aircraft. 

The minimum on ground duration is the shortest time over which the aircraft can be 
scheduled to be on the ground (taking into consideration how long it requires to land and 
take-off). 

5.9.1. Munitions Models 
In this problem formulation, there are four main considerations regarding munitions: 
maximum distance at which the munitions can be deployed against a target, how a 
particular class of munitions affects a particular class of target, the likelihood of hitting a 
target, and the range over which collateral damage may occur. Also of interest are the 
explosive yield (it is used as a substitute for the effects model) and the per-unit cost. 



 

28 

 MunitionsClass:: 
  standoffRange: Distance (meters) 
  effectModel: TargetClass → KillProbability 
  hitProbability: Real (probability) 
  yield: ExplosiveYield 
  damageRadius: Distance (meters) 
  unitCost: Real (U.S. dollars) 

The standoff range is taken to be a constant in this problem formulation; it may be 
necessary to include dependencies on the class of aircraft deploying the munitions and 
the class of target. 

The effect model indicates the effectiveness against particular classes of target and is 
modeled as a probability of destroying such targets. However, in this problem 
formulation, a simpler characterization of munitions effectiveness is used: each class has 
an associated explosive yield (weight of explosives in kilograms). 

The hit probability is the statistical likelihood of hitting a designated target. In actuality, 
this property of munitions may be quite complex (taking into account the deploying 
aircraft and target classes, for example); in this formulation, it is taken to be a fixed 
probability. 

The damage radius is the maximum distance over which collateral damage may result 
(from blast or fragmentation effects). 

5.10. Aircraft Schedules 
An aircraft schedule is a set of reservations, each of which indicates a specific action to 
be performed over a specific time period (designated as a start time and an end time): 

 Reservation:: 
  action: AircraftAction 
  period: TimePeriod 

The following classes of actions are modeled: idling on ground, holding position 
airborne, repositioning, engaging a ground target, refueling, re-arming, electronic warfare 
support and defending strike aircraft. Further details of these actions follow. 

 GoundIdle 

The aircraft lands (if necessary), remains on the ground and then takes off (if necessary). 

 Hold 

The aircraft holds its current position. This action is included to account for the fuel 
consumed, e.g., by a refueling tanker waiting to rendezvous with a client aircraft. 

 Reposition:: 
  destination: Coordinates (3-dimensional) 
  threats: Set of ThreatAssessment 
  support: Set of Aircraft 
 ThreatAssessment:: 
  threat: Target 
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  level: Real 

For repositioning, the destination (including altitude) needs to be specified. Repositioning 
actions may be annotated with information about threats from enemy defensive 
installations and support aircraft assigned to suppress those threats. For each threat, the 
installation is identified along with the level of threat (on some unspecified scale) that the 
installation represents. 

 EngageTargets:: 
  targets: Set of TargetEngagement 
  threats: Set of ThreatAssessment 
  support: Set of Aircraft 
 TargetEngagement:: 
  target: Target 
  attackAngle: PlanarAngle (optional) 
  munitions: MunitionsClass → Natural 

For target engagements, a non-empty set of targets is specified. For each target, an 
optional attack angle may be specified, and the classes and quantities of munitions for 
attacking each target must be specified. Note that the engagement will take place at 
whatever position the aircraft has reached before executing this action: the schedule must 
be such that this position is near the targets, which may require the insertion of 
repositioning actions. In this problem formulation, any change in location that occurs 
during engagement is ignored. 

Threat assessment and suppression may also be noted, as for repositioning. 

 GetFuel:: 
  tanker: Aircraft 
  quantity: FuelQuantity (kilograms) 
 GiveFuel:: 
  client: Aircraft 
  quantity: FuelQuantity (kilograms) 

Refueling is modeled as two actions: one for the tanker providing the fuel and one for the 
aircraft receiving the fuel. The quantity of fuel required needs to specified (it is specified 
in both the tanker and client aircraft for convenience). As with target engagements, 
refueling actions do not contain implicit repositioning so the net effect of actions that are 
scheduled to occur before a refueling action must be such that the tanker and client 
aircraft are in (approximately) the same location. In this problem formulation, any change 
in location that occurs during refueling is ignored. 

 Rearm:: 
  load: MunitionsLoad 

For rearming, the classes and quantities of munitions need to be specified. Note that a 
rearming action specifies what the munitions load will be after rearming, rather than a 
quantity of munitions to be added to the aircraft’s existing load.  

The aircraft’s schedule must be such that the aircraft will be at an appropriate location to 
rearm when this action is executed. Note that in this problem formulation, the facility 
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where rearming takes place is not explicitly modeled: it is assumed to be capable of 
handling an arbitrary number of rearming actions simultaneously and has an infinite 
supply of each class of munitions.  

 StandoffEW:: 
  targets: Set of Target 
  clients: Set of Aircraft 
 EscortEW:: 
  destination: Coordinates (3-dimensional) 
  targets: Set of Target 
  clients: Set of Aircraft 

Two types of electronic warfare are modeled: standoff and escort. In standoff EW, the 
EW aircraft remains at its current location and provides jamming support for the 
specified set of client aircraft. A set of known radars may be specified to be jammed; in 
addition, the EW aircraft may monitor the electromagnetic spectrum and jam whatever 
signals are detected. 

In escort EW, the EW aircraft accompanies the client aircraft to the specified destination, 
providing jamming support along the way. (It may also deploy HARM missiles to destroy 
Red radars but in this problem formulation such actions are not explicitly scheduled.) 

 EscortDefense:: 
  destination: Coordinates (3-dimensional) 
  targets: Set of Target 
  clients: Set of Aircraft 

In an escort defense action, a fighter aircraft accompanies the specified client aircraft to 
the specified location and responds to Red threats as appropriate along the way, e.g., by 
destroying target acquisition radars or SAM sites. A set of known threats may be 
specified, but unknown threats may arise. The fighter aircraft should be appropriately 
pre-positioned to rendezvous with the client aircraft at the start of the defense action. 

Note that only repositioning, escort EW and escort defense actions may result in 
significant changes in the aircraft’s location. 

5.11. Dynamic State of Aircraft 
As an aircraft executes the actions in a schedule, certain properties – such as its position, 
fuel load and munitions load – change in manners that, in this problem formulation, are 
taken to be deterministic. Consequently, the dynamic state of an aircraft can be predicted 
from its schedule and its initial state. 

In this problem formulation, an aircraft’s dynamic state has the following properties: 

 AircraftDynamicState:: 
  position: Coordinates (3-dimensional) 
  fuelLoad: FuelQuantity (kilograms) 
  refuelingLoad: FuelQuantity (kilograms) 
  munitionsLoad: MunitionsLoad 
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Although an aircraft can perform multiple simultaneous actions, such as flying and 
jamming, in this problem formulation simultaneous actions are combined into a single 
AircraftAction that must be completed before another can begin. Consequently, the 
AircraftActions for a single aircraft must not overlap. 

Due to this constraint, a schedule’s set of reservations can be considered to be a sequence 
of reservations that are ordered in time, with each action’s scheduled end time being 
earlier than the scheduled start time of the following action (if there is one). For a given 
schedule,  reservation(i) denotes the ith reservation (for i between 1 and the number of 
reservations, inclusive). 

It is useful in formulating the constraints below to consider the (predicted) effects of each 
action on an aircraft’s dynamic state: given an initial dynamic state D(0), the dynamic 
state after the first reservation, D(1), can be computed based on the class and parameters 
of the action; then the dynamic state after the second reservation, D(2), can be computed 
from D(1); and so on. 

If D(i) denotes the predicted dynamic state of an aircraft after the ith reservation 
(1≤i<number of reservations), then D(i+1) can be computed from D(i) by considering the 
class of action specified by reservation(i+1), as detailed below. For brevity, position(i) 
may be used to denote position(D(i)), and similarly for the other properties. 

N.B.: if a property is not explicitly mentioned for a class of action, then it is assumed to 
be unchanged by that class. 

• GroundIdle – This action is taken to be a no-op for aircraft, although in actuality 
landing and taking off would consume fuel. 

• Holding – The fuel load is decreased by an amount depending on the duration of the 
holding action: 
  fuelLoad(i+1) = fuelLoad(i) - burnModel(duration) 

• Repositioning – The position of the aircraft after a repositioning action is the 
specified destination. The amount of fuel consumed depends on the distance traveled 
and the time taken, and is given by the aircraft’s fuel burn model. 
  position(i+1) = destination 
  fuelLoad(i+1) = fuelLoad(i) - burnModel(distance, duration) 
where distance = |destination - position(i)|. 

• Target Engagement – The quantity of each type of munitions is depleted by the 
number deployed against the targets: for each munitions class m: 
  munitionsLoad(i+1)(m) = munitionsLoad(i)(m) - Σt∈targets munitions(t)(m) 

• GetFuel – The fuel load is increased by the specified amount: 
  fuelLoad(i+1) = fuelLoad(i) + quantity 

• GiveFuel – The fuel available for refueling other aircraft is depleted by the specified 
amount: 
  refuelingLoad(i+1) = refuelingLoad(i) - quantity 
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• Rearm – The munitions load changes to the specified munitions load. 
  munitionsLoad(i+1) = load 

• StandoffEW – The fuel load is reduced by the amount of fuel required for the aircraft 
to hold position for the duration of the action: 
  fuelLoad(i+1) = fuelLoad(i) - burnModel(duration) 

• EscortEW – The position of the aircraft at the end of the action is the specified 
destination and the fuel load is reduced appropriately for the distance and duration: 
  position(i+1) = destination 
  fuelLoad(i+1) = fuelLoad(i) - burnModel(distance, duration) 

• EscortDefense – The position of the aircraft after the action is the specified 
destination and the fuel load is reduced appropriately for the distance and duration: 
  position(i+1) = destination 
  fuelLoad(i+1) = fuelLoad(i) - burnModel(distance, duration) 

Note that some of the dynamical properties may become unphysical by these 
computations, indicating that the schedule is infeasible. For example, the fuel load may 
become negative. The feasibility of a schedule in general is determined by the constraints 
detailed below. 

5.12. Constraints on Aircraft Schedules 

5.12.1. Contiguous Actions 
As discussed above, no two actions for any single aircraft can be scheduled to overlap. 
Moreover, to help ensure that all resource consumption is accounted for, it is convenient 
to schedule all of an aircraft’s time. Consequently, reservations are required to be 
contiguous – the end time of each reservation meets the start time of the following 
reservation (if any). 

∀ i∈1…size(S)-1⋅ startTime(reservation(i+1)) = endTime(reservation(i)) 
where S is an aircraft schedule, and r and s are reservations in that schedule. 

In order to satisfy this constraint, it may be necessary to insert on-ground idling or 
airborne holding actions into a schedule. 

5.12.2. Sufficient Fuel 
This constraint specifies that the aircraft never runs out of fuel. Given the prediction of 
the aircraft’s dynamic state, as discussed above, this constraint can be formulated in 
terms of the fuel load after each action: 

∀ i∈1…size(S)⋅ fuelLoad(i)>0 

5.12.3. Sufficient Duration 
For repositioning, EscortEW and EscortDefense actions, the duration of the reservation 
must be long enough to allow the aircraft to travel the scheduled distance, given the 
aircraft’s maximum speed. 
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For target engagement, refueling and rearming actions, the duration of the reservation 
must be long enough to allow the aircraft to complete the action. In this problem 
formulation, each of these classes of action is assumed to take a constant time. 

For on-ground idling, sufficient time must be allowed at least for landing and take-off. 
(Moreover, it is probably not sensible to schedule very short on-ground idles.) 

∀ i∈1…size(S)⋅ 
if class(action(reservation(i))) = Reposition, EscortEW or EscortDefense: 

duration(reservation(i)) ≥ |position(i) - position(i-1)|/maximumSpeed 
if class(action(reservation(i))) = GroundIdle: 

duration(reservation(i)) ≥ minOnGroundDuration 
if class(action(reservation(i))) = EngageTargets: 

duration(reservation(i)) ≥ engagementDuration 
if class(action(reservation(i))) = GiveFuel or GetFuel: 

duration(reservation(i)) ≥ refuelingDuration 
if class(action(reservation(i))) = Rearm: 

duration(reservation(i)) ≥ rearmingDuration 

5.12.4. Appropriate Landing 
For on-ground idling and rearming, the aircraft must (approximately) be pre-positioned at 
an appropriate location (at an airbase, for example). 

∀ i∈1…size(S)⋅ class(action(reservation(i))) = GroundIdle or Rearm 
⇒ ∃L∈LandingSites⋅ position(i) ≈ position(L) 

where LandingSites is the set of suitable landing sites (taken to be a constant in this 
formulation). 

5.12.5. Sufficient Munitions 
For each target engagement action, the aircraft must have a sufficient load of each 
required class of munitions. Given the prediction of the aircraft’s dynamic state, this 
condition is readily expressed in terms of the munitions load after each action: 

∀ i∈1…size(S), m∈MunitionsClasses⋅ munitionsLoad(i)(m)≥0 
This constraint would be violated only by scheduling over-use of any class of munitions, 
causing the predicted load to become negative. 

5.12.6. Kill Probability 
For each target that is to be engaged, the combined probability of the deployed munitions 
destroying the target must exceed the target’s minimum kill probability. 

∀ r∈S⋅ class(action(r)) = EngageTargets 
⇒ ∀ t∈targets(action(r))⋅ combinedKillProbability(munitions(t), target(t)) 

≥ minKillProbability(target(t)) 
where the function combinedKillProbability computes the probability of the specified 
munitions killing the target, based on the munitions’ individual effects models. 
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However, in this problem formulation, a simpler approach is taken: the expected weight 
of explosives deployed against a target must exceed the target’s specified explosive 
weight, where the expected weight of explosives is the sum of the yields of the individual 
munitions scaled by the munitions accuracy: 

∀ r∈S⋅ class(action(r)) = EngageTargets 
⇒ ∀ t∈targets(action(r))⋅ totalExplosiveYield(munitions(t)) 
≥ explosives(target(t)) 

where totalExplosiveYield sums the yields of the individual munitions: 

totalExplosiveYield(D: MunitionsClass → Natural) 
= Σm∈MunitionsClasses D(m) × hitProbability(m) × yield(m) 

5.12.7. At Most One Kill per Mobile Target 
In this problem formulation, a mobile target should be scheduled to be engaged at most 
once because a mobile target’s trajectory is likely to change significantly after the target 
is attacked. If multiple engagements are required, they should be scheduled one at a time, 
with successive engagements being informed by damage assessment. 

∀t∈Targets⋅ isMobile(t)  
⇒ |{ (a:Aircraft, r:Reservation)⋅ r∈schedule(a) ∧ destroys(r, t) }| ≤ 1 

where isMobile(t) determines if the specified target is mobile (based on its trajectory) and 
destroys(r, t) determines if reservation r is a target engagement action against target t: 

destroys(r, t) ≡ class(action(r)) = EngageTargets 
   ∧ ∃e∈targets(action(r))⋅ t=target(e) 

5.12.8. Proximity to Targets for Engagement 
In order for an aircraft to engage a target, the aircraft must be close enough to the target 
at some point during the engagement, where “close enough” is defined by the stand-off 
distances of all of the munitions deployed against the target. 

∀ i∈1…size(S)⋅ class(action(reservation(i))) = EngageTargets 
⇒ ∀ t∈targets, m∈MunitionsClasses⋅ munitions(t)(m)>0 
⇒ separation ≤ standoffRange(m) 
where separation = closestDistance(position(i), 

trajectory(target(t)), 
period(reservation(i))) 

The function closestDistance computes the smallest separation between the specified 
position and the specified trajectory that occurs during the specified time period. 

5.12.9. Collateral Damage 
For a target engagement action, the largest collateral damage range caused by any of the 
munitions deployed against the target must be smaller than the target’s smallest collateral 
damage radius during the entire engagement period. 

∀ i∈1…size(S)⋅ class(action(reservation(i))) = EngageTargets 
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⇒ ∀ t∈targets(action(reservation(i))), m∈MunitionsClasses⋅ munitions(t)(m)>0 
⇒ damageRadius(m) ≤ damageLimit(target(t), period(reservation(i))) 

The function damageLimit computes the smallest value of the property damageRadius 
that occurs in the specified target’s trajectory during the specified time period. 

5.12.10. Angle of Attack 
In this problem formulation, it is assumed that an aircraft can always adopt the requisite 
angle of attack. 

5.12.11. Fuel Capacity 
When an aircraft refuels, the quantity of fuel it receives added to the quantity it already 
has cannot exceed its fuel capacity. This constraint is readily expressible in terms of the 
dynamic state after refueling: 

∀ i∈1…size(S)⋅ class(action(reservation(i))) = GetFuel 
 ⇒ fuelLoad(i) ≤ fuelCapacity 

5.12.12. Refueling Load 
A refueling tanker cannot provide more fuel than it has onboard. This constraint can be 
expressed in terms of the refueling load that remains after refueling actions: 

∀ i∈1…size(S)⋅ class(action(reservation(i))) = GiveFuel 
 ⇒ refuelingLoad(i) ≥ 0 

5.12.13. Refueling Rendezvous 
In this problem formulation, a tanker can refuel only one client aircraft at a time. This 
constraint is implied by the Sequential Actions constraint since a single GiveFuel action 
can supply fuel to only one aircraft. However, it is necessary to ensure that both the 
tanker and client aircraft agree on refueling and that they are close enough to effect 
refueling. 

For a schedule ST of a refueling tanker T: 

∀ i∈1…size(ST)⋅ class(action(reservationT(i))) = GiveFuel 
⇒ ∃ j ∈1…size(SC)⋅ class(action(reservationC(j))) = GetFuel 

∧ tanker(action(reservationC(j))) = T 
∧ quantity(action(reservationT(i))) = quantity(action(reservationC(i))) 
∧ |period(reservationT(i))∩period(reservationC(j))| ≥ refuelingDuration 
∧ |positionT(i-1) - positionC(j-1)| ≤ refuelingProximity 

where the client aircraft C is the one specified by the tanker’s GiveFuel reservation – i.e., 
C = client(action(reservationT(i))) – and the subscripts T and C are used to distinguish 
properties of the tanker and client aircraft. 

In words, this constraint can be read as follows: for a given reservation for a tanker to 
supply fuel, the specified client aircraft must have a corresponding reservation to get fuel 
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from that tanker, and the two reservations must overlap in time sufficiently and the two 
aircraft must be sufficiently close at the start of the reservations. 

5.12.14. Refueling Tanker Stays in Friendly Airspace 
Air refueling tankers must remain in friendly airspace, defined by the set of coordinates 
FriendlyAirspace. For a schedule ST of a refueling tanker T: 

∀ i∈1…size(ST)⋅ position(i)∈FriendlyAirspace 

5.12.15. Munitions Capacity 
For rearming, the specified munitions load must be allowed by the munitions capacity of 
the aircraft, A: 

∀ r∈S⋅ class(action(r)) = Rearm 
⇒ munitionsCapacity(A)(load(r)) 

5.12.16. Threat Suppression 
Repositioning and Target Engagement actions may be subject to threats from Red 
installations – it is assumed that a function threatAssessment is available that annotates 
the actions in an aircraft’s schedule with threat assessments, based on the aircraft’s 
trajectory. 

Aircraft must be assigned to suppress threats, which they may achieve by: (i) standoff 
EW;  (ii) escort EW; (iii) escort defense; or (iv) destroying the threatening installations 
before the threatened actions begin. (N.B.: the installations may already be scheduled to 
be destroyed as targets in their own right or because they are threatening earlier actions – 
it does not matter in this constraint why they are scheduled to be destroyed.) 

The constraint considered here only checks that support aircraft have been assigned to 
threatened actions – the effectiveness of the assigned aircraft against the threats is 
considered in other constraints. 

For a schedule S of an aircraft A: 

∀ r∈S⋅ class(action(r)) = Reposition or EngageTargets 
⇒ ∀ t∈threats(action(r))⋅ 

∃ b∈support(action(r)), s∈schedule(b)⋅ 
standoffEW(s, threat(t)) ∧ period(s) ⊆ period(r) 

∨ ∃ b∈support(action(r)), s∈schedule(b)⋅ 
escortEW(s, threat(t)) ∧ period(s) ⊆ period(r) 

∨ ∃ b∈support(action(r)), s∈schedule(b)⋅ defends(s) ∧ period(s) ⊆ period(r) 
∨ ∃ b∈Aircraft, s∈schedule(b)⋅ destroys(s, threat(t)) ∧ period(s) ≤ period(r) 

where p ⊆ q signifies that time period p includes time period q, p ≤ q signifies that time 
period p finishes before time period q begins, and: 

• standoffEW(s, t) determines if reservation s is a standoff jamming action against 
target t for aircraft A: 
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standoffEW(s, t) ≡ class(action(s)) = StandoffEW 
∧ A∈clients(action(s)) ∧ t∈targets(action(s)) 

• escortEW(s, t) determines if reservation s is an escort EW action against target t for 
aircraft A: 

escortEW(s, t) ≡ class(action(s)) = EscortEW 
∧ A∈clients(action(s)) ∧ t∈targets(action(s)) 

• defends(s) determines if reservations s is a defense action for aircraft A: 
defends(s) ≡ class(action(s)) = Defend ∧ A∈clients(action(s)) 

• destroys(s, t) determines if reservation s is a target engagement action against target t: 
destroys(s, t) ≡ class(action(s)) = Defend ∧ A∈clients(action(s)) 

5.12.17. Standoff EW Proximity 
To effectively shield a client aircraft against a threat from a standoff position, an EW 
aircraft, E, must be sufficiently close to both. In this problem formulation, this constraint 
is expressed in terms of maximum separations – between the EW and client aircraft and 
between the EW aircraft and the threats – that must be observed throughout the duration 
of the EW action. 

∀ r∈S⋅ class(action(r)) = StandoffEW 
⇒ ∧ ∀ C∈clients(action(r))⋅ maximumSeparation(trajectory(E), 
        trajectory(C), period(r)) 

≤ standoffEWRange 
∧ ∀ R∈targets(action(r))⋅ maximumSeparation(trajectory(E), 

       trajectory(R), period(r)) 
≤ standoffEWRange 

where the function maximumSeparation computes the largest instantaneous distance 
between the two specified trajectories during the specified time period. 

5.12.18. Escort EW Proximity 
To effectively escort a client aircraft, an EW aircraft, E, must remain sufficiently close to 
the client. 

∀ r∈S⋅ class(action(r)) = EscortEW 
⇒ ∀ C∈clients(action(r))⋅ maximumSeparation(trajectory(E), 
        trajectory(C), period(r)) 

≤ escortEWRange 
N.B.: in actuality, an EW aircraft may also wish to maintain a minimum distance from 
the threats for self-protection. However, it is assumed that this requirement can be 
accommodated within the confines laid down by the escort action. 

5.12.19. Standoff EW Capacity 
The number of threats against which an EW aircraft, E, can provide protection from a 
standoff position is limited. (The condition that the capacity be non-zero ensures that only 
EW-capable aircraft are scheduled to provide EW support.) 
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∀ r∈S⋅ class(action(r)) = StandoffEW 
⇒ EWCapacity > 0 
∧ |threats(action(r))| ≤ EWCapacity(E) 

5.12.20. Escort EW Capacity 
The number of simultaneous threats against which an EW aircraft, E, can provide 
protection during escort is limited. (The condition that the capacity be non-zero ensures 
that only EW-capable aircraft are scheduled to provide EW support.) 

∀ r∈S⋅ class(action(r)) = EscortEW 
⇒ EWCapacity > 0 
∧ ∀ p∈period(r)⋅ |{t∈threats(action(r)) ∧ separation(trajectory(E), trajectory(t), p) 

< airThreatRange(t)}| 
≤ EWCapacity(E) 

where separation computes the instantaneous distance between the two specified 
trajectories at the specified time. 

5.12.21. Escort Defense Proximity 
In order to effectively defend its client aircraft, a support aircraft must remain within a 
certain distance of its clients. For a schedule S of a defending aircraft F: 

∀ r∈S⋅ class(action(r)) = EscortDefense 
⇒ ∀ C∈clients(action(r))⋅ maximumSeparation(trajectory(F), 

       trajectory(C), period(r)) 
≤ defenseRange(F) 

5.12.22. Escort Defense Capacity 
If a support aircraft, F, is assigned to defend strike aircraft against known threats, the 
number of simultaneous threats must be limited. Note that only known threats are taken 
into account. 

∀ r∈S⋅ class(action(r)) = EscortDefense 
⇒ class(F) = Fighter 
∧ ∀ p∈period(r)⋅ |{t∈threats(action(r)) ∧ separation(trajectory(F), trajectory(t), p) 

< airThreatRange(t)}| 
≤ defenseCapacity(F) 

where separation computes the instantaneous distance between the two specified 
trajectories at the specified time. 

N.B.: when a support aircraft is scheduled to perform defense actions, the number of 
threats to be countered may not be known in advance – some threats may be specified but 
other, unanticipated threats may arise. While the quantity of munitions required is thus 
unknown, some account should be taken of how many defense missions are scheduled 
between re-armings. However, this is omitted from this problem formulation. 
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5.12.23. Quality and Cost Metrics 
Given an aircraft schedule S, its quality can be computed as the sum of the values of the 
targets engaged, weighted by their probabilities of being killed: 

targetValue(S) ≡ Σr∈S ∧ class(action(r))=EngageTargets  

Σt∈targets(action(r)) value(target(t)) × combinedKillProbability(munitions(t), 
target(t)) 

The cost of a schedule can be measured in terms of the fuel and munitions consumed. 
The fuel cost can be computed over all refueling actions (with allowance made for the 
initial and final fuel loads): 

fuelCost(S) ≡ Σr∈S ∧ class(action(r))=GetFuel quantity(action(r)) + fuelLoad(0) – 
fuelLoad(size(S)) 
The munitions cost can be computed over all target engagements, over all targets engaged 
in each engagement, and over all munitions deployed against each target: 

munitionsCost(S) = Σr∈S ∧ class(action(r))=EngageTargets 

Σt∈targets(action(r)) Σm∈MunitionsClasses unitCost(m) × munitions(t)(m) 
For a set of aircraft, quality and cost metrics can be computed as the sums of the 
individual metrics. 
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6. Planware 
The Planware system is Kestrel’s domain-specific generator of high-performance 
planners and schedulers. 

Planware provides an answer to the question of how to help automate the acquisition of 
requirements from the user, and how to assemble a formal requirement specification for 
the user. The key idea is to focus on a narrow, well-defined class of problems and 
programs, and to build a precise, abstract, domain-specific description formalism that 
covers this class. 

From a software development perspective, interaction with the user is only required in 
order to obtain the refinement from the abstract specification to a description of the 
concrete requirements of a particular problem instance. 

Planware’s main capabilities are: 

Simple Modeling Language: A simple, intuitive formalism that describes the behavior 
of a resource by explicitly describing the set of activities it must perform. 

Multiple Resource Coordination: The synchronized use of multiple resources is 
obtained by the use of compact descriptions of resources capabilities represented as 
services. 

Configurable Problem-Solving Strategy: The modeler can select the scheduling 
strategy to be used by the generated scheduling application just by choosing among a 
number of different search-based implementations available to the code generator. 

Integrated Development Environment: Modeling, scheduler generation, and schedule 
computation are performed in a uniform development environment that supports all 
phases of the development process. 

6.1. Planware in a Nutshell 
One of the most important requirements driving the design and implementation of  
Planware was the ability to represent the synchronization of multiple resources without 
using complex mathematical or logical formalisms. To achieve this goal, Planware uses 
Abstract State Machines (ASM) to model the behavior of tasks and resources. 

To handle the interactions involved in multi-resource problems, Planware uses a service 
matching theory in which resources can offer and/or require different types of services. 
The scheduler is responsible for matching providers and requesters in a consistent 
fashion. For example, a transportation organization might want a scheduler to 
simultaneously handle its aircraft, crews, fuel, and airport load/unload facilities. Each 
resource has its own internal required patterns of behavior and may have dependencies on 
other resources. 

The semantics of a resource is the set of possible behaviors that it can exhibit. We treat 
these behaviors as (temporal) sequences of activities modeled as ASM modes (abstract 
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states). Each activity is characterized by a set of mode variables (e.g., start-time and 
duration), the set of services that it offers (e.g. the flying mode of an aircraft offers a 
transportation service), and the set of services that it requires (e.g. the flying mode of an 
aircraft requires the services of a crew). 

A formal theory of a resource should have as models exactly the physically feasible 
behaviors of the resource. The axioms serve to constrain the values it can exhibit. A 
formal theory constrains the values that mode variables can take on in states (e.g., the 
weight of cargo cannot exceed a maximum value during the flying mode of an aircraft). 
The transitions serve to constrain the evolution of the mode variables (e.g., the finish time 
of one activity must occur no later than the start time of the next activity; a take-off 
activity can only be followed by a fly activity, etc.). 

All modes have variables for the start-time, finish-time, and duration of the 
corresponding activity, plus related constraints. They may also have other variables and 
constraints that further define the resource behavior, and better describe the mode. A 
mode may also provide and/or require services. Only the temporal resource constraints 
of the activities are relevant, not their nature. Thus the same mechanism can be used to 
model activities as diverse as transportation, computation, allocating a logical design to 
a hardware/software platform, personnel assignments, workflow, manufacturing, and so 
on. 

A task is also expressed formally as an ASM. The main difference between a task and a 
resource is that a task offers no service – it only requires services of resources. For 
example, a fighter mission may require fuel, crew, and weapons resources. 

 

Figure 12:Planware Generation Process 



 

42 

6.2. Representing Resources as Activity Machines 
To allow users to specify complex multi-resource problems Kestrel started by trying to 
identify a language that would naturally represent the basic concepts in the domain. The 
first approximation was to look for planning and scheduling ontologies.  

Smith & Becker in [19] describe an ontology for planning and scheduling systems. The 
five top-level entities in this ontology are tasks or demands, activities, resources, services, 
and constraints. Using this ontology, the role of a scheduling or planning system can be 
described as the prescription of a sequence of activities that a set of resources must 
perform over time to perform the services required by a task. Based on this description, it 
is clear that any formalism for describing a scheduling problem domain must be able to 
represent tasks, resources, activities, and services, plus associated constraints. 

If one considers the processing of an activity by a resource as a possible “state” or 
“mode” the resource entity can assume, one can think of a resource model as the 
description of all the valid sequences of activities it can perform. For example, a 
transportation aircraft might have the following sequence of activities: 

Prepare    Fly   Fly    Unload    Refuel    Fly    and so on. 

Or a strike fighter might execute the following sequence of activities while executing a 
mission: 

Rearm    Position    EngageTarget    Position    EngageTarget    and so on. 
Each legal sequence of activities is called a behavior. A resource is characterized by a 
potentially infinite collection of behaviors. A convenient and intuitive model for concisely 
representing an infinite collection of behaviors is a state machine but since the term 
“state” is somewhat misleading the models are referred to as activity machines, as 
exemplified below. 

 
Figure 13:A Planware activity machine diagram 

In the activity machine diagram, the boxes/states are referred to as activities. The arrows 
are called transitions and indicate which activities can legally follow one another. 

6.3. Representing Activities as Sets of State Variables 
The activity machine per se gives general information about the legal sequences of 
activities for a resource, but little information about the activities. Clearly in scheduling 
there is a need to model the timing of activities, as well as the capacity of a resource to do 
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useful work, and other physical constraints. The next step in modeling resources is to 
represent information about an activity via activity variables, simply called variables. 

The set of variables defined for a particular resource model represents the state descriptor 
used to describe all activities performed by this resource. For example, a Fly activity of a 
transportation resource might be characterized by variables that model its start time, 
finish time, origin, destination, and others. Planware uses the same collection of variables 
to characterize all activities of a particular activity machine. This collection is sometimes 
called the signature of the machine. Technically, each activity is treated as a first-order 
theory, with the signature providing the vocabulary of the theory, and the axioms 
specifying constraints on the meaning of the variables (and other vocabulary).  

 
 

mode-machine StrikeFighter is 
 constant baseLoc : Location 
  constant fuelBurnRate : BurnRate 
  constant maxFuelCapacity : Capacity 
  constant engagementDuration : Duration 
  constant rearmingDuration : Duration 
  input-variable targetLoc : Location 
  input-variable munitionType : Munition 
  input-variable targetYield : Capacity 
  internal-variable origin, dest, airRefTrack : Location 
  external-variable st, et, duration : Time 
 end-mode-machine 

 
Figure 14:Activity Machine Signature 

for a Strike Fighter Resource 

 
The variables defining the signature of an activity machine are further divided into four 
groups: constants, internal variables, external variables, and input variables. 

Constants: are the fixed parameters used to characterize invariant aspects of the 
resource. For example, the size of the cargo hold of an aircraft, its maximum speed, the 
maximum amount of fuel it can carry are parameters that can be constants for a given 
aircraft type. The set of constants define the input values that should be provided to the 
scheduling system to create concrete instances of resources at schedule computation time. 

Internal Variables are auxiliary variables used by the scheduler for bookkeeping 
purposes. For example, if there is a constraint that states that an aircraft needs to go 
through preventive maintenance after a certain number of hours flown, an internal 
variable can be used to maintain the number of hours flown since last maintenance. 

External Variables represent the values that are modified by the scheduler engine while 
computing the schedule. For example, the start and end time of an aircraft Fly activity 
will be set by the scheduler based on the availability of additional resources like Crews and 
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Airports. External variable values depend not only upon the evolution of the resource 
machine but also upon the scheduling decisions made by the problem-solving control 
strategy. 

Input variables Input variables serve as a mechanism for passing parameters between a 
resource requesting a service and a resource providing it. For example, the origin and 
destination of a Fly activity may be specified as input variables whose values get 
assigned each time a transportation task needs to be satisfied. Input variables act as 
constant variables for a given fragment of the resource behavior. The role of the input 
variables and external variables will be further discussed when we present the concept 
of services and service matches. 

After defining the variables that can take on possibly new values at each activity, we can 
express more information about a behavior. 

Most variables of interest hold their values for the duration of an activity, and only 
change with the transition between activities. In the syntax construct used to describe 
valid transitions, the variables whose values change as a result of the transition are 
explicitly represented. Three external variables are pre-defined for all activity 
machines, and do not need to be explicitly represented in the assignments field of a 
transition: start-time, end-time, and duration. Implicit in the structure of the activity 
machine is the constraint that states that the start-time of an activity is always greater 
than or equal to the end-time of the preceding activity; and that the end-time of an 
activity is equal to or greater than the sum of its start-time and its duration. Additional 
properties about the possible values a variable can take can be stated through the use 
of constraint expressions. 

6.4. Defining Behavior using Constraints 
Not all combinations of values for the variables are physically possible. For example, if 
the maximum munitions capacity of a fighter is 100 tons, then an activity in which the 
munitionRequired variable has a value exceeding 100 tons does not model a realizable 
situation. To rule out such impossible situations, each activity has axioms that express 
constraints on the values that variables can take on in an activity. The generated 
scheduler uses the constraints expressed in the model as pruning conditions to drive 
the expansion of the search tree. 

Furthermore, it is necessary to put constraints on transitions, to model the physically 
realizable evolution of variables between activities. For example, the transition from 
Preparation to TakeOff  specifies that the end time of activity Preparation should be 
less than or equal to the start time of activity TakeOff. The constraints labeling a 
transition must refer to the values of variables in both the before and after modes. The 
usual notation is to refer to the value of a variable x in the after state by priming it: x’. 
So the constraint endTime’ <= startTime means that the finish time of the before 
activity must be no later than the start of the after activity. As previously mentioned, a 
number of temporal constraints between modes do not need to be explicitly 
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represented since the structure of the machine already assumes temporal dependencies 
between the sequence of valid activities. The constraints on the transitions are called 
guards. Guards are used to guide the scheduler to expand the correct sequence of activities 
needed to satisfy the request. 

Similar to the guards on the transition, the assignment of values to variables can also be 
used to express or enforce constraints. Conditional expressions can be used in the 
definition of variable assignments to drive the valid sequence of activities expanded. The 
following figure shows an example of a simplified Planware model for a strike fighter 
with four activities: Idle, Rearming, Positioning, Refueling, and EngagingTarget, and 
some of the valid transitions between the different modes. In the transition from 
Rearming to Positioning we determine if a Refueling activity is needed or not: If there is 
enough fuel to engage the target and return to the home base, no refueling is needed; 
otherwise, the value of the variable airRefTrack is set to the location of the air refueling 
track. The variable airRefTrack is used in the guard of the transition from Positioning to 
Refueling to force the scheduling algorithm to include an air refueling activity in the 
activity sequence if necessary.  

mode-machine StrikeFighter is 
mode Idle has  
end-mode 
mode Rearming has 
required-invariant loadMunition (st, et, rearmingDuration, munitionType)  

end-mode 
mode Positioning has  
end-mode 
mode EngagingTarget has 

provided-invariant engageTarget(st, et, targetLoc, munitionType, targetYield)  
end-mode 
transition from Idle to Rearming when {} is  
{ duration := rearmingDuration } 
transition from Rearming to Positioning when {} is { 
              dest := (if  (consumedFuel(baseLoc, targetLoc, fuelBurnRate) <= maxFuelCapacity) 
         then findAirTrackLocation(baseLoc, targetLoc)  
       else targetLoc), 
       airRefTrack := (if (consumedFuel(baseLoc, targetLoc, fuelBurnRate) <= maxFuelCapacity)  
     then dest 

     else zeroLoc)} 
transition from Positioning to Refueling when { airRefTrack != zeroLoc } is {}  

transition from Positioning to Engaging when { dest = targetLoc } is {}  

end-mode-machine 
 

Figure 15:Activity Machine for Strike Fighter Resource 

6.5. Coordinating Resources Using Services 
The modes or activities, the variables, the transitions, and the constraints are sufficient to 
represent the behavior of an individual resource. The key missing element of this 
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formalism is how to connect resources to tasks, and how to coordinate the usage of 
several resources to accomplish complex tasks. For example, the transportation of a 
certain amount of cargo between two locations may involve the usage of a number of 
different aircraft, airports, crews, fuel, ground control personnel, diplomatic clearances, 
etc. Engaging a given target may involve the coordination of air refueling tankers, escort 
aircraft, air patrol, jammers, etc. 

We need to provide modeling constructs that allow the explicit representation of these 
dependencies. The missing modeling construct is the service: The service is the element 
used to coordinate and synchronize the execution of activities across different resources. 
Each activity machine may specify required and/or provided services. Machines that only 
request services define the top-level tasks that drive the entire scheduling process. 
Resources are machines that provide one or more services. Resources can also request 
additional services. For example, to provide transportation service to a transportation 
request, the aircraft may need services from one or more crew resources. The figure 
above gives an example of a resource that offers an engageTarget service and requires a 
loadMunition service to be able to engage the target. In this case, the resource plays the 
dual role of provider and requester. The concept of requested and provided services 
allows tasks and resources to be represented using a uniform formalism. 

As illustrated above, a service is specified by a predicate associated with a mode 
together with an indication of whether it is a provided or required service. For example, 
the engage target service may be represented by the predicate engageTarget(startTime, 
endTime, targetLoc, targetMunitionType) which specifies a certain target located at 
coordinates specified as targetLoc to be engaged some time during the time interval 
defined by the values of startTime and endTime. 

The requester resource specifies the service as a required condition. The provider specifies it 
as a provided condition. For temporal synchronization, a service can be specified as a 
pre-condition, a post-condition, or an invariant. If the service is specified as an 
invariant, both activities, the requesting and the providing, should start and end at the 
same time. For the other types, there are set of rules to establish the appropriate 
synchronization depending on the characteristics of the provider and requester. For 
example, if the requesting service is a pre-condition and the providing service is a post-
condition, the providing activity should finish before the requesting activity can start. 

6.6. Passing Parameters through Service Descriptions 
There is also a set of rules governing the assignment of values to the parameters specified 
in the service description. For the requesting resource, external variables present in the 
service predicate will have their values set by the scheduler after an appropriate provider 
has been identified. All other variables will not change value. For the providing resource, 
input variables present in the service predicate will act as constants for the purpose of finding 
a valid sequence of activities to satisfy the request. External variables will be unified with 
external variables coming from the requester. At scheduling time, any constraints imposed 
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on the external variables of the requester, will be translated to the corresponding variables 
of the provider. In our engageTarget example, the variables targetLoc and 
targetMunitionType are defined as input variables. Their values will be passed by the 
requesting target and will be treated as constant for the duration of that particular 
mission. 

Note that the introduction of services in mode machines allows one to treat tasks as a 
special case of resource. Tasks are the drivers of a planning or scheduling problem. The 
overall nature of the scheduling problem is to carry out a set of tasks subject to the 
constraints imposed by the available resources. In terms of the activity machine model, a 
task can be modeled as a resource that requires service, but offers none. The figure below 
shows an air strike task modeled as a simple machine with just one mode. Its 
engagingTarget mode requires the service engageTarget. The task model also specifies 
the values to be used in the service request: target position and munition type are defined 
as constant parameters and should be provided as input to the provider resource. Note 
that the engageTarget mode has two axioms expressing constraints on the start and finish 
time of the activity – the start time must occur no earlier than the earliestTimeOnTarget 
and the finish time must occur before the latestTimeOnTarget. 

mode-machine Target is 
constant targetClass : TargetClass  
constant minKillProbability : Probability  
constant targetLoc : Location 
constant earliestTimeOnTarget, latestTimeOnTarget : Time  
constant munitionType : Munition  
external-variable st, et, duration : Time  
mode  EngagingTarget has 

required-invariant  engageTarget(st, et,  targetLoc, munitionType)  
constraint  st >= earliestTimeOnTarget  
constraint  et <= latestTimeOnTarget 

end-mode 
end-mode-machine 

Figure 16:Target Task Model 

The component tasks and resources have been modeled individually, and now the 
composite system must be modeled. To model a complex resource system one focuses on 
the interactions of the components, which are specified by the services. The service 
match formula schema below expresses the conditions under which the service provided 
by resource Prov satisfies the service required by resource Req: 

� (constants (Req), input-vars (Req), constants (Prov)) 
� (ext-vars (Req), internal-vars (Req), input-vars (Prov), ext-vars (Prov), internal-vars (Prov)). 

(Provided Conditions (Req) ∧ ProvidedConditions(Prov) 
⇒ 

ReqConditions(Req) ∧ Constraints (Req) ∧ ReqConditions(Prov) ∧  Constraints (Prov)) 
Two kinds of information are derived from reasoning about the formula. First, witnesses 
are obtained for the existentials, meaning that for each existentially quantified variable, a 
term over the preceding universally quantified variables is extracted. Second, any of the 
conjuncts in the consequent of the formula that cannot be proved are gathered. These 
gathered constraints are the aggregated constraints of the composite resource Req - Prov. 
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While they are not provable at design time, they will be treated as constraints to enforce at 
run-time (i.e. schedule-computation-time), either via pruning or constraint propagation. 

In Planware the actual ground constraints are determined dynamically, and depend on the 
input data, together with the dynamics of the scheduling process (the current state of the 
process). This is in contrast to many Operations Research and Constraint Programming 
systems in which a static set of constraints is passed to a generic solver. Planware not only 
generates a customized solver for each problem, but the solver works on a dynamic 
constraint problem. 

6.7. Scheduler Code Generation 
From the activity machine models described in the previous section, Planware 
automatically generates a fully operational scheduling application. The key component of 
the generated code is a search-based scheduling algorithm, and a constraint propagation 
mechanism. 

In addition to the search algorithm implementation, support code is also generated to 
represent resources and activities, and to produce I/O for the application. The following 
paragraphs explain in more detail the code generation process, and the different 
components created by Planware. 

6.8. Scheduling Implemented as a Bidding Process 
Planware generates search-based scheduling algorithms implementing a bidding process 
as its main control cycle. In this process, entities requiring services post tasks, or requests 
for bids. Provider resources capable of performing the type of service specified in a task 
respond with their best bid according to their own internal strategy. The requesters then 
collect the bids, rank them according to the requester’s objective function, select the best 
bid, and notify the selected bidders. Constraint propagation is triggered every time a bid 
is accepted. The propagation updates the internal state of the resources involved in the 
bidding. The rejected bids are discarded, and no additional work is needed. 

6.9. Algorithms Generated by Composing Program Schemas 
The concrete implementation of the scheduling algorithm used in a particular application 
is obtained by instantiating and composing program schemes. A program schema is a 
parameterized fragment of algorithmic logic that gets instantiated for each service match 
between a given provider and requester. Different program schemes are used to allow a 
number of different bidding generation and bidding selection mechanisms to be 
combined in the implementation of an application. For example, a program schema could 
be used to implement a bidding mechanism in which the first feasible bid is accepted; a 
different one could collect up to n bids, and select the one that can finish the service with 
the minimum amount of time; a third one could generate all possible bids and select the 
one with earliest start-time. 
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6.10. Schema Composition Driven by Service Tree 
The program schemes are composed in a tree-like structure reflecting the structure of 
service matches defined by the activity machine models. As described in the previous 
section, an activity machine can request, and/or provide services. For each required 
service in the model, the generator code will search for a matching provider – a resource 
providing a service that matches the signature of the required service. As a provider for a 
given service can request additional services from other resources, the service matches 
define a directed acyclic graph we refer to as the service-match tree. The code generator 
traverses this service tree creating the appropriate code to formulate the task, generate the 
bids, and select the best bid. 

6.11. Scheduling Strategy Selected through Service Match 

 
Figure 17:Service Tree for Target Scheduler 

The service-match tree is an auxiliary data-structure automatically generated by Planware 
before the actual application generation. By exposing the structure of the service-match 
tree to the user through the graphical interface, a greater level of control over the code 
generation can be obtained. An advanced user can configure the search schemes to be 
used by the generator for each service match in the tree. The above figure shows a 
possible service tree for a model in which, to engage a target, Strike Fighter may require 
escort, EW defense, air refueling, and munition. Each of the required resources may also 
require additional resources. In this example, the munition resource requires some storage 
space at the AirBase. 

Through the GUI, the user can select the search strategy used to satisfy the requests, as 
well as the sequence in which the services are satisfied. Once a provider and a requester for 
a given service are specified, the system automatically generates and inserts in the model 
source file a textual representation describing the service tree containing all possible 
matches between the different resources. The figure below shows the service match 
between the target task and the strike fighter. In this example, there is only one type of 
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resource that can provide the engageTarget service. In general, several different resources 
could offer the same service. 

6.12. Constraint Propagation Implemented by 
Arc Consistency Algorithm 

The constraint propagation code used to update the resources is not automatically synthe-
sized. A standard implementation of an arc consistency algorithm that propagates 
temporal constraints on a simple temporal network is used. All schedulers generated 
share the same implementation.  

service-match  Target EngagingTarget engageTarget is  
service-requester  Target 
requester-mode EngagingTarget 
requested-service  required-invariant engageTarget  
search-strategy BreadthFirst  
service-providers has { 

provider-record StrikeFighter Engaging engageTarget is  
service-provider StrikeFighter  
provider-mode  Engaging  
provided-service  

provided-invariant engageTarget  
search-strategy  BreadthFirst 
end-provider-record 
} 

end-service-match 

 
Figure 18:Service Match generated for 

Target task and StrikeFighter 

The constraint propagation is responsible for maintaining consistent start times for all 
scheduled activities. Each activity has a time bound representing the earliest and latest 
time the activity can start executing. Each activity time bound defines a node in the 
constraint network. The scheduler adds temporal constraints (arcs) between time bounds 
(nodes) as the problem solving process evolves. If constraint violations are detected, 
scheduling decisions are retracted, and the search backtracks to the last decision point 
before the violation. 

6.13. Resource Represented as Capacity Profile 
Activities and resources are closely related. Resources are represented by a capacity 
profile: a temporal sequence of activities representing the resource reservations 
performed by the scheduler. The profile represents a trace of the activity machine defined 
in the abstract model. The data structure used to represent the profile must be optimized 
for lookup and update. During the bid creation phase of the scheduling algorithm, the 
providers inspect their capacity profile searching for feasible intervals capable of feasibly 
performing the requested service. Once the requester accepts a bid, the selected provider 
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updates its own profile to reflect the new reservation. Planware uses a binary tree 
implementation optimized for the particular type of resource. 

The representation of the activities in the resource profile is generated from the set of 
variables defined by the activity machine model. All activities created for a given 
resource instance share the same set of constants. Activities are defined as a record 
structure with a field for each variable described in the model. The code to access and set 
each one of these fields is automatically generated. Additional code to print and display 
individual activities, and activities sequences is also generated to facilitate debugging, 
testing, and schedule visualization. A number of different output formats are supported: 
plain text, XML, etc. 

6.14. Activity Sequences computed Dynamically 
Activities are dynamically created at schedule computation time. Activity sequences are 
created by the bidding mechanism previously discussed. The generation of the bid 
creation mechanism is one of the most complex components of Planware. It involves the 
generation of code capable of querying the resource profile for feasible intervals, 
expanding the sequence of activities the resource must execute, and enforcing the 
constraints imposed on the service by both the requester and the provider resource. 

The bid creation mechanism is implemented as a 3-step process: Identify feasible 
capacity intervals, expand activity sequence for selected intervals, propagate temporal 
constraints. If these three steps generate a feasible activity sequence, a bid containing this 
sequence is sent to the tasker resource. If the bid is accepted, then the resource profile is 
updated to include the new sequence of activities. 

After a bid has been accepted, and the resources appropriately updated, the search 
algorithm changes its focus to schedule additional pending service requirements. 
Depending on the configuration provided by the user through the service match, the 
search proceeds by scheduling the requirements of the current bidder, or goes back to the 
level of the previous requester, and schedules its next task. The sequence of services 
scheduled is also determined by the service match structure. 

In terms of the global behavior of the application, the execution of the generated 
scheduler starts by reading a file describing all the top-level tasks, and all concrete 
resources available. The scheduling algorithm cycles through the top-level tasks, and 
expands the search following the structure defined by the service-match tree. If a top-
level task cannot be satisfied using the available resources, it is marked “unschedulable” 
and discarded. Once there are no more pending tasks in the system, the scheduling 
algorithm finishes its execution and, if instructed to do so, outputs the schedule in text 
form, writes the schedule to an XML file, and/or displays the schedule on the GUI. 
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6.15. Planware Implementation – 
IDE for Domain Modeling and Planning 

Planware’s implementation can be divided into two main components: the graphical 
interface, and the code generator. 

6.15.1. Planware Interface Implemented as a NetBeans Module 
The interface component is written in Java and uses the open source configurable 
Integrated Development Environment (IDE) platform NetBeans, which is an extensible 
IDE designed to support multiple programming languages and formalisms. Additional 
capabilities are added to the NetBeans platform by writing modules using its 
customization API. A NetBeans module is just a JAR file (collection of compressed Java 
class files) that can be “installed” in the platform. A module can implement a number of 
different capabilities like syntax sensitive source code editing, compilation, execution, 
and debugging among others. The Planware module provides: 

1. An outline editor for editing activity machines based on a hierarchical 
representation of the models. 

2. A graphical editor that allows the visualization and fast specification of activity 
machines. 

3. A source code editor for more detailed specification of the models. 

4. Visualization tools for inspecting the results of executing the generated code on 
test data. 

Developing resource models in this environment requires very little knowledge of 
Planware syntax. The set of syntax constructs is small and most of the model creation 
activity can be accomplished using just the outline and graphical editors. 

A typical Planware resource model has less than a hundred lines of code, and can be 
created in a matter of minutes. A complete application model can be defined in few hours 
using a highly interactive environment. 

The advantage of using an extensible platform like NetBeans is that the full application 
development and execution can take place in the same environment, and using the same 
interaction paradigm. Defining models, generating and compiling code, and executing the 
scheduler are all defined using the same basic set of actions and gestures. 

6.15.2. Planware Code Generator Implemented as a 
Specware Application 

The Planware code generator is implemented as an application layer on top of Specware, 
Kestrel’s software synthesis platform. The Planware code generator translates the activity 
machines and service match structure into an implementation of the algorithms and 
auxiliary data-structures described above. Planware first generates an intermediate 
representation of the algorithms in MetaSlang, the specification language used internally 
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by Specware. This representation is then further refined, optimized, and composed with 
appropriate library code to generate a highly optimized implementation of the scheduling 
application in some programming language. 

For a problem model with five different resource types (approximately 500 lines of code), 
Planware generates an intermediate representation with around 10,000 lines of code. The 
size of final code in the target language usually increases by a factor of 3 or 4 in 
comparison with the generated code since all the library code used is included as part of 
the target implementation. The total synthesis time is on the order of 1 or 2 minutes for 
average size models – 4 or 5 different types of resources. 

In terms of run-time performance of the generated schedulers, without any special 
heuristics added, models with four resource types running on data sets with thousands of 
tasks, and around 20 resource instances for each resource type, generate schedules in a 
matter of seconds. The runtime performance of the generated code was around 20% faster 
than the performance provided by scheduling applications previously developed 
manually by the authors for the domain of logistical deployment. 

6.16. Planware Application Development Process 
The Planware domain analysis and application development process has the following 
steps: 

Requirement Acquisition – The user interactively develops a model of the scheduling 
problem using the primitives previously discussed. This model describes the kinds of 
tasks and resources that are of concern. The figure below shows the graphical 
representation of a problem model. 

The problem model is formalized into a specification that can be read abstractly as follows: 
Given a collection of task instances and a collection of resource instances, find a schedule 
that accomplishes as many of the tasks as possible (or approximately optimizes the given 
cost function), subject to all the constraints of the resource models, and using only the 
given resources. 

The required and offered services of a resource express the dependencies between 
resource classes. The arrows between the resources represent the services required and 
provided. Planware analyzes the task and resource models to determine a hierarchy of 
service matches (service required matched with service offered) that is rooted in a task 
model. 
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Figure 19:Planware Model for Sensor to Decision Maker to 
Shooter Scheduler 

 
Algorithm Design – The problem specification is used to automatically instantiate 
program schemes that embody abstract algorithmic knowledge about global search and 
constraint propagation. The algorithm generation process follows the structure of the 
service hierarchy, resulting in a nested structure of instantiated search schemes. 

Datatype Refinement and Optimization – Program schemes used by the generator are 
described in terms of abstract datatypes. After the generation of the scheduling algorithm, 
abstract datatypes are refined to concrete programming language types. Additional 
program transformations to provide further optimizations can then be manually or 
automatically applied to the resulting code. 

Code generation – Finally code in a programming language (currently CommonLisp) is 
generated. 
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7. Conclusion: Summary & Related Work 
In its “e-Merge-ANT” project, Kestrel developed notions of real-time, approximate 
optimization of constraint networks and developed a distributed algorithm that is simple 
but appears to be effective for a wide range of problems. It seems that prior to this work, 
constraint problems were generally considered too computationally expensive to solve or 
to be considered for real-time applications. 

The idea of local constraint optimization that is the keystone of the algorithm presented in 
this report is not a new one. Indeed, a similar algorithm was published by Fabiunke [3]. 
However, what is new is Kestrel’s focus on the real-time properties, and in particular on 
how the algorithm behaves after a small number of iterations (in the spirit of “good-
enough, soon-enough”). Kestrel tailored the algorithm mainly to improve this part of its 
performance. 

Other research groups are investigating distributed constraint satisfaction and 
optimization. For example, Yokoo et al. have developed what is perhaps the best known 
algorithm in the field, the “Distributed Breakout” algorithm. Investigations by Zhang et 
al. under the ANTs program have generally found that the Kestrel algorithm gives better 
performance [5]. Kestrel’s algorithm also served as a subject of study as regards phase 
transitions by van Parunak et al. [1,2]. 

Kestrel used the framework of distributed constraint optimization to develop a solution 
for distributed resource management in sensor networks. The solution concept seems 
validated by the results on the challenge problem simulator, although the results on the 
hardware indicate that details for a practical system would need to be worked out. This 
approach to distributed resource management is being taken up by others [4]. 

In its work on time-critical targeting, Kestrel was able to model at a high level the 
essential properties of air resources and targets and to automatically generate executable 
schedulers. Due to security restrictions, Kestrel’s models had to be based on publicly 
available information [6,7,8,9] and thus are inevitably somewhat simplified and naïve. 
Nevertheless, Kestrel believes that the basic approach has been validated. 
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